Relative Wall groups and decorations
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 495-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-row diagram of relative Wall groups with decorations is constructed in the paper, which allows a unified approach to the study of Wall groups and Tate cohomology. Using this diagram a number of new results are obtained for Wall groups and Browder–Livesay groups, and their natural mappings in the case of finite 2-groups.
@article{SM_1995_83_2_a12,
     author = {Yu. V. Muranov},
     title = {Relative {Wall} groups and decorations},
     journal = {Sbornik. Mathematics},
     pages = {495--514},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a12/}
}
TY  - JOUR
AU  - Yu. V. Muranov
TI  - Relative Wall groups and decorations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 495
EP  - 514
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a12/
LA  - en
ID  - SM_1995_83_2_a12
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%T Relative Wall groups and decorations
%J Sbornik. Mathematics
%D 1995
%P 495-514
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a12/
%G en
%F SM_1995_83_2_a12
Yu. V. Muranov. Relative Wall groups and decorations. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 495-514. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a12/

[1] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. Math., 103 (1976), 1–80 | DOI | MR | Zbl

[2] Kharshiladze A. F., “Ermitova $K$-teoriya i kvadratichnye rasshireniya kolets”, Tr. MMO, 41, URSS, M., 1980, 3–36 | MR | Zbl

[3] Ranicki A., The $L$-theory of twisted quadratic extensions., Appendix 4. Preprint, Princeton, 1981 | MR | Zbl

[4] Hambleton I., Taylor L., Williams B., “An Introduction to maps between surgery obstruction groups”, LN, 1051, 1984, 49–127 | MR | Zbl

[5] Hambleton I., Ranicki A., Taylor L., “Raund $L$-theory”, Journ. of Pure and Appl. Alg., 47 (1987), 131–154 | DOI | MR | Zbl

[6] Kharshiladze A. F., “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42 (1987), 55–85 | MR | Zbl

[7] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183 (1992), 3–14 | MR

[8] Hambleton I., “Projective surgery obstructions on closed manifolds”, LN, 943, 1982, 102–131 | MR

[9] Muranov Yu. V., “Prepyatstviya k perestroikam dvulistnykh nakrytii”, Matem. sb., 131(173) (1986), 347–356 | MR | Zbl

[10] Muranov Yu. V., “Kogomologii Teita i gruppy Braudera–Livsi diedralnykh grupp”, Matem. zametki, 54:2 (1992), 44–55 | MR

[11] Wall C. T. C., “Norms of units in group rings”, Proc. London Math. Soc., 19 (1974), 591–632 | MR

[12] Dress A., “Induction and structure theorems for orthogonal representation of finite groups”, Ann. Math., 102 (1975), 291–325 | DOI | MR | Zbl

[13] Wall C. T. C., “Formulae for surgery obstructions”, Topology, 15 (1976), 189–210 | DOI | MR | Zbl

[14] Ranicki A., Exact sequences in the algebraic theory of surgery, Matem. Notes, 26, Princeton, 1981 | MR | Zbl

[15] Wall C. T. C., Foundation of algebraic $L$-theory, LN, 343, 1972 | MR

[16] Gabriel P., Tsisman M., Kategorii chastnykh i teoriya gomotopii, Mir, M., 1971 | MR | Zbl

[17] Quillen D. G., Homotopical Algebra, LN, 43, 1967 | MR | Zbl

[18] Muranov Yu. V., “Estestvennye otobrazheniya otnositelnykh grupp Uolla”, Matem. sb., 183:2 (1992), 38–51 | MR | Zbl

[19] Hambleton I., Taylor L., Williams B., Detections theorems for $K$-theory and $L$-theory, Preprint No 6, Mc. Master University, 1988/1989 | MR

[20] Muranov Yu. V., “Tipy elementov grupp Uolla dlya koltsa ${\widehat {\mathbb Z}}_2 \pi $”, Izv. AN BSSR. Ser. fiz.-matem., 1991, no. 5, 30–34 | MR | Zbl