Polynomial integrals of geodesic flows on a~two-dimensional torus
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 469-481

Voir la notice de l'article provenant de la source Math-Net.Ru

The geodesic curves of a Riemannian metric on a surface are described by a Hamiltonian system with two degrees of freedom whose Hamiltonian is quadratic in the momenta. Because of the homogeneity, every integral of the geodesic problem is a function of integrals that are polynomial in the momenta. The geodesic flow on a surface of genus greater than one does not admit an additional nonconstant integral at all, but on the other hand there are numerous examples of metrics on a torus whose geodesic flows are completely integrable: there are polynomial integrals of degree $\leqslant2$ that are independent of the Hamiltonian. It appears that the degree of an additional 'irreducible' polynomial integral of a geodesic flow on a torus cannot exceed two. In the present paper this conjecture is proved for metrics which can arbitrarily closely approximate any metric on a two-dimensional torus.
@article{SM_1995_83_2_a10,
     author = {V. V. Kozlov and N. V. Denisova},
     title = {Polynomial integrals of geodesic flows on a~two-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {469--481},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - N. V. Denisova
TI  - Polynomial integrals of geodesic flows on a~two-dimensional torus
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 469
EP  - 481
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/
LA  - en
ID  - SM_1995_83_2_a10
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A N. V. Denisova
%T Polynomial integrals of geodesic flows on a~two-dimensional torus
%J Sbornik. Mathematics
%D 1995
%P 469-481
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/
%G en
%F SM_1995_83_2_a10
V. V. Kozlov; N. V. Denisova. Polynomial integrals of geodesic flows on a~two-dimensional torus. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 469-481. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/