Polynomial integrals of geodesic flows on a two-dimensional torus
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 469-481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The geodesic curves of a Riemannian metric on a surface are described by a Hamiltonian system with two degrees of freedom whose Hamiltonian is quadratic in the momenta. Because of the homogeneity, every integral of the geodesic problem is a function of integrals that are polynomial in the momenta. The geodesic flow on a surface of genus greater than one does not admit an additional nonconstant integral at all, but on the other hand there are numerous examples of metrics on a torus whose geodesic flows are completely integrable: there are polynomial integrals of degree $\leqslant2$ that are independent of the Hamiltonian. It appears that the degree of an additional 'irreducible' polynomial integral of a geodesic flow on a torus cannot exceed two. In the present paper this conjecture is proved for metrics which can arbitrarily closely approximate any metric on a two-dimensional torus.
@article{SM_1995_83_2_a10,
     author = {V. V. Kozlov and N. V. Denisova},
     title = {Polynomial integrals of geodesic flows on a~two-dimensional torus},
     journal = {Sbornik. Mathematics},
     pages = {469--481},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/}
}
TY  - JOUR
AU  - V. V. Kozlov
AU  - N. V. Denisova
TI  - Polynomial integrals of geodesic flows on a two-dimensional torus
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 469
EP  - 481
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/
LA  - en
ID  - SM_1995_83_2_a10
ER  - 
%0 Journal Article
%A V. V. Kozlov
%A N. V. Denisova
%T Polynomial integrals of geodesic flows on a two-dimensional torus
%J Sbornik. Mathematics
%D 1995
%P 469-481
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/
%G en
%F SM_1995_83_2_a10
V. V. Kozlov; N. V. Denisova. Polynomial integrals of geodesic flows on a two-dimensional torus. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 469-481. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a10/

[1] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[2] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, DAN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl

[3] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorosti pervym integralom”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 994–1010 | MR | Zbl

[4] Bolotin S. V., “Dvoyakoasimptoticheskie traektorii minimalnykh geodezicheskikh”, Vestn. MGU. Ser. 1. Matem., mekh., 1992, no. 1, 92–96 | MR

[5] Kozlov V. V., Denisova N. V., “Simmetrii i topologiya dinamicheskikh sistem s dvumya stepenyami svobody”, Matem. sb., 184 (226) (1993), 125–148 | MR | Zbl

[6] Birkgof Dzh., Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941

[7] Kozlov V. V., “Integrable and Non-Integrable Hamiltonian Systems”, Sov. Sci. Rev. C. Math. Phys., 8 (1989), 1–81 | MR | Zbl

[8] Byalyi M. L., “O polinomialnykh po impulsam pervykh integralakh dlya mekhanicheskoi sistemy na dvumernom tore”, Funktsion. analiz i ego pril., 21:4 (1987), 64–65 | MR | Zbl

[9] Kozlov V. V., Treschev D. V., “Ob integriruemosti gamiltonovykh sistem s toricheskim prostranstvom polozhenii”, Matem. sb., 135 (177) (1988), 119–138

[10] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR

[11] Shklyarskii D. O., Chentsov N. N., Yaglom I. M., Izbrannye zadachi i teoremy elementarnoi matematiki, Nauka, M., 1965

[12] Kozlov V. V., Treschev D. V., “Polinomialnye integraly gamiltonovykh sistem s eksponentsialnym vzaimodeistviem”, Izv. AN SSSR. Ser. matem., 53:3 (1989), 537–556 | Zbl