A characteristic feature of the~$n$-dimensional sphere in the~Euclidean space $E^{n+p}$
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 315-320

Voir la notice de l'article provenant de la source Math-Net.Ru

Submanifolds with zero geodesic torsion in Euclidean space are studied. Conditions are found under which submanifolds of this class are hyperspheres of certain Euclidean spaces of lower dimension
@article{SM_1995_83_2_a1,
     author = {I. I. Bodrenko},
     title = {A characteristic feature of the~$n$-dimensional sphere in {the~Euclidean} space $E^{n+p}$},
     journal = {Sbornik. Mathematics},
     pages = {315--320},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/}
}
TY  - JOUR
AU  - I. I. Bodrenko
TI  - A characteristic feature of the~$n$-dimensional sphere in the~Euclidean space $E^{n+p}$
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 315
EP  - 320
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/
LA  - en
ID  - SM_1995_83_2_a1
ER  - 
%0 Journal Article
%A I. I. Bodrenko
%T A characteristic feature of the~$n$-dimensional sphere in the~Euclidean space $E^{n+p}$
%J Sbornik. Mathematics
%D 1995
%P 315-320
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/
%G en
%F SM_1995_83_2_a1
I. I. Bodrenko. A characteristic feature of the~$n$-dimensional sphere in the~Euclidean space $E^{n+p}$. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 315-320. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/