A characteristic feature of the~$n$-dimensional sphere in the~Euclidean space $E^{n+p}$
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 315-320
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Submanifolds with zero geodesic torsion in Euclidean space are studied. Conditions are found under which submanifolds of this class are hyperspheres of certain Euclidean spaces of lower dimension
			
            
            
            
          
        
      @article{SM_1995_83_2_a1,
     author = {I. I. Bodrenko},
     title = {A characteristic feature of the~$n$-dimensional sphere in {the~Euclidean} space $E^{n+p}$},
     journal = {Sbornik. Mathematics},
     pages = {315--320},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/}
}
                      
                      
                    I. I. Bodrenko. A characteristic feature of the~$n$-dimensional sphere in the~Euclidean space $E^{n+p}$. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 315-320. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/
                  
                