A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 315-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Submanifolds with zero geodesic torsion in Euclidean space are studied. Conditions are found under which submanifolds of this class are hyperspheres of certain Euclidean spaces of lower dimension
@article{SM_1995_83_2_a1,
     author = {I. I. Bodrenko},
     title = {A characteristic feature of the~$n$-dimensional sphere in {the~Euclidean} space $E^{n+p}$},
     journal = {Sbornik. Mathematics},
     pages = {315--320},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/}
}
TY  - JOUR
AU  - I. I. Bodrenko
TI  - A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 315
EP  - 320
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/
LA  - en
ID  - SM_1995_83_2_a1
ER  - 
%0 Journal Article
%A I. I. Bodrenko
%T A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$
%J Sbornik. Mathematics
%D 1995
%P 315-320
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/
%G en
%F SM_1995_83_2_a1
I. I. Bodrenko. A characteristic feature of the $n$-dimensional sphere in the Euclidean space $E^{n+p}$. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 315-320. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a1/

[1] Blyashke V., Differentsialnaya geometriya, ONTI, M., 1935

[2] Fomenko V. T., Nekotorye rezultaty teorii dvumernykh poverkhnostei v $E^4$, Dep. v VINITI 05.06.87. No 4062. V.87, Volgogr. un-t, Volgograd, 1987 | MR | Zbl

[3] Chen B.-Y., Geometry of submanifolds, M. Dekker, New York, 1973 | MR | Zbl

[4] Fomenko V. T., “Nekotorye svoistva dvumernykh poverkhnostei s nulevym normalnym krucheniem v $E^4$”, Matem. sb., 106 (148) (1978), 589–603 | MR | Zbl

[5] Kadomtsev S. B., “Issledovanie nekotorykh svoistv normalnogo krucheniya dvumernoi poverkhnosti v chetyrekhmernom prostranstve”, Itogi nauki i tekhniki. Problemy geometrii, 7, VINITI, M., 1975, 267–278 | MR

[6] Bodrenko I. I., “Ob $n$-mernykh poverkhnostyakh v evklidovom prostranstve $E^{n+p}$, prinadlezhaschikh nekotoroi $(n+1)$-mernoi ploskosti”, Matem. zametki, 54:4 (1993), 19–23 | MR | Zbl

[7] Bodrenko I. I., Poverkhnosti $F^n$ v $E^{n+p}$ s nulevym normalnym krucheniem, nesuschie sopryazhennuyu koordinatnuyu set, Dep. v VINITI 18.01.90. No 393. V.90, Volgogr. un-t, Volgograd, 1990

[8] O'Neill B., “Isotropic and Kähler immersions”, Canad. J. Math., 17 (1965), 907–915 | MR | Zbl

[9] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[10] Chen B.-Y., “Differential geometry of submanifolds with planar normal sections”, Ann. Mat. Pura Appl., 130 (1982), 59–66 | DOI | MR | Zbl

[11] Chen B.-Y., Li S.-J., “Some new characterizations of Veronese surface and standard tori”, Revista. Union Mat. Argentina, 29 (1984), 291–309

[12] Bodrenko I. I., O geometrii podmnogoobrazii s tochechno planarnymi normalnymi secheniyami, Dep. v VINITI 01.04.93. No 815. V.93, Volgogr. un-t, Volgograd, 1993