A criterion for completeness of an analytic vector field on a locally compact Abelian group
Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 297-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a criterion for completeness of a compactly supported analytic vector field $C$ on a locally compact Abelian group $X$. It is shown that $C$ gives rise to an analytic flow in $X$ if and only if there exists on $X$ a fundamental family of cylindrical differential systems (Frobenius distributions) that are stable with respect to the action of $C$.
@article{SM_1995_83_2_a0,
     author = {S. S. Akbarov},
     title = {A criterion for completeness of an~analytic vector field on a~locally compact {Abelian} group},
     journal = {Sbornik. Mathematics},
     pages = {297--313},
     year = {1995},
     volume = {83},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_2_a0/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - A criterion for completeness of an analytic vector field on a locally compact Abelian group
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 297
EP  - 313
VL  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_2_a0/
LA  - en
ID  - SM_1995_83_2_a0
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T A criterion for completeness of an analytic vector field on a locally compact Abelian group
%J Sbornik. Mathematics
%D 1995
%P 297-313
%V 83
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_83_2_a0/
%G en
%F SM_1995_83_2_a0
S. S. Akbarov. A criterion for completeness of an analytic vector field on a locally compact Abelian group. Sbornik. Mathematics, Tome 83 (1995) no. 2, pp. 297-313. http://geodesic.mathdoc.fr/item/SM_1995_83_2_a0/

[1] Bruhat F., “Distributions sur un groupe localement compact et applications a l'etude des representations des groupes p-adiques”, B. Soc. Math. France, 89 (1961), 43–75 | MR | Zbl

[2] Glushkov V. M., “Algebry Li lokalno bikompaktnykh grupp”, UMN, 12:2 (1957), 137–142 | MR | Zbl

[3] Lashof R. K., “Lie algebras of locally compact groups”, Pac. J. Math., 7 (1957), 1145–1162 | MR | Zbl

[4] Whyburn K., “Differentiable cohomology on locally compact groups”, P. Nat. Ac. Sci. USA, 67 (1970), 45–51 | DOI | MR | Zbl

[5] Akbarov S. S., “Vektornye polya na lokalno kompaktnykh abelevykh gruppakh”, Matem. zametki, 45:1 (1989), 132–134 | MR | Zbl

[6] Akbarov S. S., “Differentsirovaniya algebry gladkikh funktsii na lokalno kompaktnoi abelevoi gruppe”, Matem. zametki, 50:2 (1991), 3–13 | MR | Zbl

[7] Akbarov S. S., “Stroenie differentsialnykh operatorov na lokalno kompaktnoi abelevoi gruppe”, Matem. zametki, 52:4 (1992), 3–14 | MR | Zbl

[8] De Napoles S. M., “Sur les fonctions analytiques dans les groupes localement compacts”, C. R. Ac. Sc. Ser. I, 298 (1984), 79–82 | MR | Zbl

[9] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972 | MR

[10] Mandelbroit S., Kvazianaliticheskie klassy funktsii, ONTI, L.–M., 1937

[11] Kartan A., Elementarnaya teoriya analiticheskikh funktsii odnogo i neskolkikh kompleksnykh peremennykh, IL, M., 1963

[12] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 2, Nauka, M., 1985 | MR

[13] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[14] Jurchescu M., “On the canonical topology of an analytic algebra and of an analytic module”, B. Soc. Math. France, 93 (1965), 129–153 | MR | Zbl

[15] Grauert G., Remmert R., Analiticheskie lokalnye algebry, Nauka, M., 1988 | MR | Zbl

[16] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[17] Stoica L., Local operators and Markov processes, Lect. Notes in Math., 816, Springer, Heidelberg, 1980 | MR | Zbl

[18] Godbiion K., Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973

[19] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR