Hermite–Padé approximants of generalized hypergeometric functions
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 189-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicit constructions of functional approximants of the first and second kind are proposed for some collections of generalized hypergeometric functions. Formulas are proved that express the remainders of the approximants and the approximating polynomials themselves in terms of generalized hypergeometric functions with shifted parameters. Expansions in multidimensional continued fractions of the collections of functions considered are found. All this generalizes classical results related to the Gauss hypergeometric function.
@article{SM_1995_83_1_a9,
     author = {Yu. V. Nesterenko},
     title = {Hermite{\textendash}Pad\'e approximants of generalized hypergeometric functions},
     journal = {Sbornik. Mathematics},
     pages = {189--219},
     year = {1995},
     volume = {83},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a9/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Hermite–Padé approximants of generalized hypergeometric functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 189
EP  - 219
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a9/
LA  - en
ID  - SM_1995_83_1_a9
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Hermite–Padé approximants of generalized hypergeometric functions
%J Sbornik. Mathematics
%D 1995
%P 189-219
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a9/
%G en
%F SM_1995_83_1_a9
Yu. V. Nesterenko. Hermite–Padé approximants of generalized hypergeometric functions. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 189-219. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a9/

[1] Galochkin A. I., “Arifmeticheskie svoistva znachenii nekotorykh tselykh gipergeometricheskikh funktsii”, Sib. matem. zhurn., 17:6 (1976), 1220–1235 | MR | Zbl

[2] Galochkin A. I., “O neuluchshaemykh po vysote otsenkakh nekotorykh lineinykh form”, Matem. sb., 124(166):3(7) (1984), 416–430 | MR | Zbl

[3] Ivankov P. L., “Ob arifmeticheskikh svoistvakh znachenii gipergeometricheskikh funktsii”, Matem. sb., 182:2 (1991), 283–302 | MR

[4] Korobov A. N., “Otsenki nekotorykh lineinykh form”, Vestn. MGU. Ser. matem., mekh., 1986, no. 6, 36–46 | MR

[5] Korobov A. N., Tsepnye drobi i diofantovy priblizheniya, Diss. ...kand. fiz.-matem. nauk, MGU, 1990

[6] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[7] Parusnikov V. I., “Algoritm Yakobi–Perrona i sovmestnoe priblizhenie funktsii”, Matem. sb., 114(156):2 (1981), 322–333 | MR | Zbl

[8] Baker A., “Rational approximations to certain algebraic numbers”, Proc. London Math. Soc., 4 (1964), 385–398 | DOI | MR

[9] de Bruin M. G., “Convergence of generalized C-fractions”, J. Approx. Theory, 24 (1978), 177–207 | DOI | MR | Zbl

[10] Chudnovsky G., “Pade approximations to the generalized hypergeometric functions, I”, J. Math. Pures et Appl., 58 (1979), 445–476 | MR | Zbl

[11] Chudnovsky G., “Approximations de Pade explicites pour les solutions des equations differentielles lineaires fuchsiennes”, C.R. Acad. Sci. Paris, ser. A, 290 (1980), 135–137 | MR | Zbl

[12] Chudnovsky G., “Pade approximation and the Rieman monodromy problem”, Bifurcation Phenomena in Mathematical Physics and Related Topics, eds. C. Bardos, D. Bessis, D. Reidel, Boston, USA, 1980, 449–510 | MR

[13] Coates J., “On the algebraic approximation of functions”, Indag. Math., 28 (1966), 421–461 | MR

[14] Galochkin A. I., “On effective bounds for certain linear forms”, New advances in Transcendence Theory, ed. A. Baker, Cambridge University Press, 1988, 207–214 | MR

[15] Heine E., “Auszug eines Schreibens uber Kettenbruche”, J. reine angev. Math., 53 (1857), 284 | Zbl

[16] Hermite Ch., Oeuvres, Gauthier–Villars, Paris, 1917

[17] Huttner M., “Probleme de Rieman effectif et approximants de Pade-Hermite”, Approximations diophantiennes et nombres transcendants (Luminy, 1990), Walter de Gruyter Co., Berlin–New York, 1992 | MR

[18] Jager J., “A multidimentional generalization of the Pade table”, Indag. Math., 26 (1964), 192–249

[19] Mahler K., “Ein Beweis des Thue-Siegelschen Satzes uber die Approximation algebraischer Zahlen fur binomische Gleichungen”, Math. Ann., 105 (1931), 267–276 | DOI | MR | Zbl

[20] Mahler K., “Zur Approximation der Exponentialfunction und des Logarithmus”, J. reine angew. Math., 166 (1932), 118–136

[21] Mahler K., “Perfect systems”, Compositio Math., 19 (1968), 95–166 | MR | Zbl

[22] Pade H., “Recherches sur la convergence des developpements en fractions continues d'une certaine categorie de fonctions”, Ann. Sci. l'Ecole Norm. Super., XXIV (1907), 341–400 | MR

[23] Perron O., Die Lehre von den Kettenbruchen, B. I, Teubner, Stuttgart, 1954 ; B. II, 1957 | MR | Zbl

[24] Riemann B., Gesammelte mathematische Werke, Teubner, Leipzig, 1876 | Zbl