On the theory of epigroups.~II
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 133-154
Voir la notice de l'article provenant de la source Math-Net.Ru
This is a continuation of an earlier paper with the same title. The results of the earlier paper are used to characterize epigroups that are decomposable into a semilattice of nil extensions of rectangular groups, into a band or semilattice of right Archimedean epigroups, or into a band, a semilattice, or a rectangular band of unipotent epigroups. Applications are made to epigroups in which the pseudoinversion operation is an endomorphism, and epigroups in which pseudoinversion is an antiendomorphism are characterized.
@article{SM_1995_83_1_a6,
author = {L. N. Shevrin},
title = {On the theory of {epigroups.~II}},
journal = {Sbornik. Mathematics},
pages = {133--154},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a6/}
}
L. N. Shevrin. On the theory of epigroups.~II. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 133-154. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a6/