On the theory of epigroups.~II
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 133-154

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a continuation of an earlier paper with the same title. The results of the earlier paper are used to characterize epigroups that are decomposable into a semilattice of nil extensions of rectangular groups, into a band or semilattice of right Archimedean epigroups, or into a band, a semilattice, or a rectangular band of unipotent epigroups. Applications are made to epigroups in which the pseudoinversion operation is an endomorphism, and epigroups in which pseudoinversion is an antiendomorphism are characterized.
@article{SM_1995_83_1_a6,
     author = {L. N. Shevrin},
     title = {On the theory of {epigroups.~II}},
     journal = {Sbornik. Mathematics},
     pages = {133--154},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a6/}
}
TY  - JOUR
AU  - L. N. Shevrin
TI  - On the theory of epigroups.~II
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 133
EP  - 154
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a6/
LA  - en
ID  - SM_1995_83_1_a6
ER  - 
%0 Journal Article
%A L. N. Shevrin
%T On the theory of epigroups.~II
%J Sbornik. Mathematics
%D 1995
%P 133-154
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a6/
%G en
%F SM_1995_83_1_a6
L. N. Shevrin. On the theory of epigroups.~II. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 133-154. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a6/