The existence of a smooth divisor on Fano 4-folds of index 2
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 119-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$ be a smooth Fano 4-fold of index 2, and $H$ a fundamental divisor on $X$, that is, an ample divisor such that $K_X=2H$. It is proved that there is a smooth irreducible element in the linear system $|H|$.
@article{SM_1995_83_1_a5,
     author = {Yu. G. Prokhorov},
     title = {The existence of a~smooth divisor on {Fano} 4-folds of index~2},
     journal = {Sbornik. Mathematics},
     pages = {119--131},
     year = {1995},
     volume = {83},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - The existence of a smooth divisor on Fano 4-folds of index 2
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 119
EP  - 131
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/
LA  - en
ID  - SM_1995_83_1_a5
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T The existence of a smooth divisor on Fano 4-folds of index 2
%J Sbornik. Mathematics
%D 1995
%P 119-131
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/
%G en
%F SM_1995_83_1_a5
Yu. G. Prokhorov. The existence of a smooth divisor on Fano 4-folds of index 2. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/

[1] Alexeev V. A., “Theorem about good divisors on log Fano varieties”, Lect. Notes in Math., 1479, 1989, 1–9 | MR

[2] Ando J., “On extremal rays of higher dimensional varieties”, Inv. Math., 81 (1985), 347–357 | DOI | MR | Zbl

[3] Demazure M., “Surfaces de del Pezzo”, Lect. Notes in Math., 777, 1980, 23–69 | MR

[4] Fujita T., “On the structure of polarised manifolds with total deficiency one $1$, $2$ and $3$”, J. Math. Soc. Japan, 32 (1980), 709–725 ; 33 (1981), 415–434 ; 36 (1984), 75–89 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[5] Ionescu P., “Generalised adjunction and applications”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 457–472 | DOI | MR | Zbl

[6] Kawamata Y., “A generalisation of Kodaira–Ramanujam's vanishing theorem”, Math. Ann., 261 (1982), 43–46 | DOI | MR | Zbl

[7] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Adv. Stud. in Pure Math., 10 (1987), 283–360 | MR | Zbl

[8] Kobayashi S., Ochiai T., “Characterization of complex projective spaces and hyperquadrics”, J. Math. Kyoto Univ., 13 (1973), 31–47 | MR | Zbl

[9] Mori S., “Treefolds whose canonical bundles are not numerically effective”, Ann. of Math., 115 (1982), 133–176 | DOI | MR

[10] Mukai S., “Fano 3-folds”, London Math. Soc. Lect. Note Ser., 179, 1992, 255–263 | MR | Zbl

[11] Mukai S., “Biregular classification of Fano theefolds and Fano manifolds of complex 3”, Proc. Natl. Acad. Sci. USA, 86 (1989), 3000–3002 | DOI | MR | Zbl

[12] Prokhorov Yu. G., “O suschestvovanii khoroshikh divizorov na mnogoobraziyakh Fano koindeksa 3”, Tr. MIRAN, 208, Nauka, M., 1995, 266–277 | MR | Zbl

[13] Reid M., Projective morphism accoding to Kawamata, Preprint, Warwick, 1983 | MR

[14] Saint–Donat B., “Projective models of K3 surfases”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR

[15] Shin K.-H., “3-dimensional Fano varieties with canonical singularities”, Tokyo J. of Math., 12 (1989), 375–385 | MR | Zbl

[16] Viehveg E., “Vanishin theorems”, J. Reine Agnew. Math., 335 (1982), 1–8 | MR

[17] Wilson P. M. H., “Fano fourfolds of index greater than one”, J. Reine Agnew. Math., 389 (1987), 172–181 | MR

[18] Wisniewski J. A., “Ruled Fano 4-folds of index 2”, Proc. Amer. Math. Soc., 105:1 (1989), 55–61 | DOI | MR | Zbl

[19] Wisniewski J. A., “On contraction of extremal rays of Fano manifolds”, J. Reine Agnew. Math., 47 (1991), 141–157 | MR

[20] Wisniewski J. A., “On Fano 4-folds of index 2. A contribution to Mukai's classification”, Bull Polish Acad. Sci., 398 (1990), 173–184 | MR

[21] Shokurov V. V., “Gladkost obschego antikanonicheskogo divizora na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43 (1979), 430–441 | MR | Zbl

[22] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. matem., 49 (1985), 635–651 | MR

[23] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl