@article{SM_1995_83_1_a5,
author = {Yu. G. Prokhorov},
title = {The existence of a~smooth divisor on {Fano} 4-folds of index~2},
journal = {Sbornik. Mathematics},
pages = {119--131},
year = {1995},
volume = {83},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/}
}
Yu. G. Prokhorov. The existence of a smooth divisor on Fano 4-folds of index 2. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/
[1] Alexeev V. A., “Theorem about good divisors on log Fano varieties”, Lect. Notes in Math., 1479, 1989, 1–9 | MR
[2] Ando J., “On extremal rays of higher dimensional varieties”, Inv. Math., 81 (1985), 347–357 | DOI | MR | Zbl
[3] Demazure M., “Surfaces de del Pezzo”, Lect. Notes in Math., 777, 1980, 23–69 | MR
[4] Fujita T., “On the structure of polarised manifolds with total deficiency one $1$, $2$ and $3$”, J. Math. Soc. Japan, 32 (1980), 709–725 ; 33 (1981), 415–434 ; 36 (1984), 75–89 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[5] Ionescu P., “Generalised adjunction and applications”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 457–472 | DOI | MR | Zbl
[6] Kawamata Y., “A generalisation of Kodaira–Ramanujam's vanishing theorem”, Math. Ann., 261 (1982), 43–46 | DOI | MR | Zbl
[7] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Adv. Stud. in Pure Math., 10 (1987), 283–360 | MR | Zbl
[8] Kobayashi S., Ochiai T., “Characterization of complex projective spaces and hyperquadrics”, J. Math. Kyoto Univ., 13 (1973), 31–47 | MR | Zbl
[9] Mori S., “Treefolds whose canonical bundles are not numerically effective”, Ann. of Math., 115 (1982), 133–176 | DOI | MR
[10] Mukai S., “Fano 3-folds”, London Math. Soc. Lect. Note Ser., 179, 1992, 255–263 | MR | Zbl
[11] Mukai S., “Biregular classification of Fano theefolds and Fano manifolds of complex 3”, Proc. Natl. Acad. Sci. USA, 86 (1989), 3000–3002 | DOI | MR | Zbl
[12] Prokhorov Yu. G., “O suschestvovanii khoroshikh divizorov na mnogoobraziyakh Fano koindeksa 3”, Tr. MIRAN, 208, Nauka, M., 1995, 266–277 | MR | Zbl
[13] Reid M., Projective morphism accoding to Kawamata, Preprint, Warwick, 1983 | MR
[14] Saint–Donat B., “Projective models of K3 surfases”, Amer. J. Math., 96:4 (1974), 602–639 | DOI | MR
[15] Shin K.-H., “3-dimensional Fano varieties with canonical singularities”, Tokyo J. of Math., 12 (1989), 375–385 | MR | Zbl
[16] Viehveg E., “Vanishin theorems”, J. Reine Agnew. Math., 335 (1982), 1–8 | MR
[17] Wilson P. M. H., “Fano fourfolds of index greater than one”, J. Reine Agnew. Math., 389 (1987), 172–181 | MR
[18] Wisniewski J. A., “Ruled Fano 4-folds of index 2”, Proc. Amer. Math. Soc., 105:1 (1989), 55–61 | DOI | MR | Zbl
[19] Wisniewski J. A., “On contraction of extremal rays of Fano manifolds”, J. Reine Agnew. Math., 47 (1991), 141–157 | MR
[20] Wisniewski J. A., “On Fano 4-folds of index 2. A contribution to Mukai's classification”, Bull Polish Acad. Sci., 398 (1990), 173–184 | MR
[21] Shokurov V. V., “Gladkost obschego antikanonicheskogo divizora na mnogoobraziyakh Fano”, Izv. AN SSSR. Ser. matem., 43 (1979), 430–441 | MR | Zbl
[22] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. matem., 49 (1985), 635–651 | MR
[23] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl