The existence of a~smooth divisor on Fano 4-folds of index~2
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 119-131
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a smooth Fano 4-fold of index 2, and $H$ a fundamental divisor on $X$, that is, an ample divisor such that $K_X=2H$. It is proved that there is a smooth irreducible element in the linear system $|H|$.
@article{SM_1995_83_1_a5,
author = {Yu. G. Prokhorov},
title = {The existence of a~smooth divisor on {Fano} 4-folds of index~2},
journal = {Sbornik. Mathematics},
pages = {119--131},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/}
}
Yu. G. Prokhorov. The existence of a~smooth divisor on Fano 4-folds of index~2. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/