The existence of a~smooth divisor on Fano 4-folds of index~2
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 119-131

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a smooth Fano 4-fold of index 2, and $H$ a fundamental divisor on $X$, that is, an ample divisor such that $K_X=2H$. It is proved that there is a smooth irreducible element in the linear system $|H|$.
@article{SM_1995_83_1_a5,
     author = {Yu. G. Prokhorov},
     title = {The existence of a~smooth divisor on {Fano} 4-folds of index~2},
     journal = {Sbornik. Mathematics},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - The existence of a~smooth divisor on Fano 4-folds of index~2
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 119
EP  - 131
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/
LA  - en
ID  - SM_1995_83_1_a5
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T The existence of a~smooth divisor on Fano 4-folds of index~2
%J Sbornik. Mathematics
%D 1995
%P 119-131
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/
%G en
%F SM_1995_83_1_a5
Yu. G. Prokhorov. The existence of a~smooth divisor on Fano 4-folds of index~2. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 119-131. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a5/