On dynamical systems close to Hamiltonian with separatrix loops of a~saddle
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 79-91
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of two ordinary autonomous differential equations with a small parameter $\mu$ is considered on the two-dimensional Euclidean plane $R^2$. A condition for the birth of a limit cycle from a separatrix loop of a saddle of a Hamiltonian system is found for $\mu\ne0$.
@article{SM_1995_83_1_a3,
author = {V. S. Medvedev and E. L. Fedorov},
title = {On dynamical systems close to {Hamiltonian} with separatrix loops of a~saddle},
journal = {Sbornik. Mathematics},
pages = {79--91},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a3/}
}
V. S. Medvedev; E. L. Fedorov. On dynamical systems close to Hamiltonian with separatrix loops of a~saddle. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 79-91. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a3/