On properties of solutions of a~class of nonlinear second-order equations
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 67-77
Voir la notice de l'article provenant de la source Math-Net.Ru
The boundary value problem
$$
Lu=f(|u|) \quad \text {in}\quad \Omega ,
\qquad u\big|_{\partial \Omega }=w,
$$
is studied, where $\Omega$ is an arbitrary, possibly unbounded, open subset of $R^n$,
$L=\sum\limits_{i,j=1}^n\dfrac \partial {\partial x_i}
\biggl(a_{ij}(x)\dfrac \partial {\partial x_j}\biggr)$ is a differential operator of elliptic type with measurable coefficients, and $w$, $f$ are some functions.
@article{SM_1995_83_1_a2,
author = {V. A. Kondrat'ev and A. A. Kon'kov},
title = {On properties of solutions of a~class of nonlinear second-order equations},
journal = {Sbornik. Mathematics},
pages = {67--77},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a2/}
}
V. A. Kondrat'ev; A. A. Kon'kov. On properties of solutions of a~class of nonlinear second-order equations. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 67-77. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a2/