On properties of solutions of a~class of nonlinear second-order equations
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 67-77

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problem $$ Lu=f(|u|) \quad \text {in}\quad \Omega , \qquad u\big|_{\partial \Omega }=w, $$ is studied, where $\Omega$ is an arbitrary, possibly unbounded, open subset of $R^n$, $L=\sum\limits_{i,j=1}^n\dfrac \partial {\partial x_i} \biggl(a_{ij}(x)\dfrac \partial {\partial x_j}\biggr)$ is a differential operator of elliptic type with measurable coefficients, and $w$, $f$ are some functions.
@article{SM_1995_83_1_a2,
     author = {V. A. Kondrat'ev and A. A. Kon'kov},
     title = {On properties of solutions of a~class of nonlinear second-order equations},
     journal = {Sbornik. Mathematics},
     pages = {67--77},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a2/}
}
TY  - JOUR
AU  - V. A. Kondrat'ev
AU  - A. A. Kon'kov
TI  - On properties of solutions of a~class of nonlinear second-order equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 67
EP  - 77
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a2/
LA  - en
ID  - SM_1995_83_1_a2
ER  - 
%0 Journal Article
%A V. A. Kondrat'ev
%A A. A. Kon'kov
%T On properties of solutions of a~class of nonlinear second-order equations
%J Sbornik. Mathematics
%D 1995
%P 67-77
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a2/
%G en
%F SM_1995_83_1_a2
V. A. Kondrat'ev; A. A. Kon'kov. On properties of solutions of a~class of nonlinear second-order equations. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 67-77. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a2/