Metric characteristics of exceptional sets arising in estimates of subharmonic functions
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 283-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classes $U_{\mathrm{reg}}$ of subharmonic functions $u(x)$, $x\in\mathbb R^m$, $m\geqslant2$, of finite proximate order are considered, which generalize the class of functions of the form $u(z)=\ln|f(z)|$, where $f(z)$ is an entire function of completely regular growth in the sense of Levin–Pfluger. Estimates are obtained for the exceptional sets $C$ for functions $u(x)\in U_{\mathrm{reg}}$ containing the centers and radii of the balls covering $C$. Coverings of various structures are studied. In particular, the following problem is solved: Under what conditions on a continuous increasing function $h(t)$, $t\geqslant0$, $h(0)=0$, can the set $C$ be covered by balls $B_j(x_j,r_j)=\{x\in\mathbb R^m:|x-x_j| such that $\sum_{|x_j| as $R\to\infty$. In an approach proposed by V. S. Azarin these problems reduce to studying the connection between convergence in the topology of the space $\mathscr D'$ of generalized functions and convergence outside the exceptional sets.
@article{SM_1995_83_1_a12,
     author = {V. Ya. \`Eiderman},
     title = {Metric characteristics of exceptional sets arising in estimates of subharmonic functions},
     journal = {Sbornik. Mathematics},
     pages = {283--296},
     year = {1995},
     volume = {83},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a12/}
}
TY  - JOUR
AU  - V. Ya. Èiderman
TI  - Metric characteristics of exceptional sets arising in estimates of subharmonic functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 283
EP  - 296
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a12/
LA  - en
ID  - SM_1995_83_1_a12
ER  - 
%0 Journal Article
%A V. Ya. Èiderman
%T Metric characteristics of exceptional sets arising in estimates of subharmonic functions
%J Sbornik. Mathematics
%D 1995
%P 283-296
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a12/
%G en
%F SM_1995_83_1_a12
V. Ya. Èiderman. Metric characteristics of exceptional sets arising in estimates of subharmonic functions. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 283-296. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a12/

[1] Goldberg A. A., Levin B. Ya., Ostrovskii I. V., “Tselye i meromorfnye funktsii”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napravleniya, 85, VINITI, 1991, 5–185 | MR

[2] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[3] Azarin V. S., “Ob asimptoticheskom povedenii subgarmonicheskikh i tselykh funktsii”, DAN SSSR, 229:6 (1976), 1289–1291 | MR | Zbl

[4] Azarin V. S., “Ob asimptoticheskom povedenii subgarmonicheskikh funktsii konechnogo poryadka”, Matem. sb., 108(150):2 (1979), 147–167 | MR | Zbl

[5] Ronkin L. I., “Tselye funktsii”, Itogi nauki i tekhniki. Sovrem. probl. matem. Fundam. napravleniya, 9, VINITI, 1986, 5–36 | MR

[6] Favorov S. Yu., “O mnozhestvakh ponizheniya dlya subgarmonicheskikh funktsii vpolne regulyarnogo rosta”, Sib. matem. zhurn., 20:6 (1979), 1294–1302 | MR | Zbl

[7] Levin B. Ya., Dopolneniya i ispravleniya k knige: “Raspredelenie kornei tselykh funktsii”, Preprint FTINT AN USSR, FTINT, Kharkov, 1978

[8] Favorov S. Yu., “O mnozhestvakh ponizheniya rosta dlya tselykh i subgarmonicheskikh funktsii”, Matem. zametki, 40:4 (1986), 460–467 | MR | Zbl

[9] Eiderman V. Ya., “Ob isklyuchitelnom mnozhestve v asimptoticheskikh otsenkakh subgarmonicheskikh funktsii”, Sib. matem. zhurn., 29:6 (1988), 185–196 | MR

[10] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[11] Eiderman V. Ya., “O sravnenii mery Khausdorfa i emkosti”, Algebra i analiz, 3:6 (1991), 173–188 | MR

[12] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[13] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, 1956, 483–522 | MR | Zbl

[14] Eiderman V. Ya., “Measure and capacity of exceptional sets arising in estimations of $\delta $-subharmonic functions”, Potential Theory, ed. M. Kishi, Walter de Gruyter, Berlin–N.Y., 1991, 171–177 | MR