The spectral shift function, the characteristic function of a contraction, and a generalized integral
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 237-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $T$ be a contraction that is a trace class perturbation of a unitary operator $V$, and let $\{\lambda_k\}$ be the discrete spectrum of $T$. For a sufficiently large class of functions $\Phi$ the trace formula $$ \operatorname{tr}\{\Phi(T)-\Phi (V)\}=\sum_k\{\Phi(\lambda_k)-\Phi(\lambda_k/|\lambda_k|)\}+(B)\int_0^{2\pi}\Phi'(e^{i\varphi})\,d\Omega(\varphi), $$ holds. This formula is a direct analogue of the well-known M. G. Krein trace formula for unitary operators. It is natural to call the function $\Omega$ the spectral shift distribution. Generally speaking, it is not of bounded variation; however, the integral in the trace formula exists in the wider $B$-sense. In the present paper an explicit representation is obtained for $\Omega$ in terms of the characteristic function $\Theta(\lambda)$ of the contraction $T$, and also a relation between a certain derivative $\Omega'$ and the scattering matrix $S(\varphi)$ of the pair $(T,V)$: $$ \det S(\varphi)=\exp\{-2\pi i\overline{\Omega'(\varphi)}\,\} \quad \textrm{a.e.\ with respect to Lebesgue measure} $$ is established. A necessary and sufficient condition that $\Omega$ have bounded variation is obtained. In particular, the necessary and sufficient condition requires that the singular spectrum of the contraction $T$ be empty. The main results are complete.
@article{SM_1995_83_1_a11,
     author = {A. V. Rybkin},
     title = {The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral},
     journal = {Sbornik. Mathematics},
     pages = {237--281},
     year = {1995},
     volume = {83},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a11/}
}
TY  - JOUR
AU  - A. V. Rybkin
TI  - The spectral shift function, the characteristic function of a contraction, and a generalized integral
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 237
EP  - 281
VL  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a11/
LA  - en
ID  - SM_1995_83_1_a11
ER  - 
%0 Journal Article
%A A. V. Rybkin
%T The spectral shift function, the characteristic function of a contraction, and a generalized integral
%J Sbornik. Mathematics
%D 1995
%P 237-281
%V 83
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a11/
%G en
%F SM_1995_83_1_a11
A. V. Rybkin. The spectral shift function, the characteristic function of a contraction, and a generalized integral. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 237-281. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a11/

[1] Krein M. G., “O formule sledov v teorii vozmuschenii”, Matem. sb., 33:3 (1953), 597–626 | MR | Zbl

[2] Krein M. G., “Ob opredelitelyakh vozmuscheniya i formule sledov dlya unitarnykh i samosopryazhennykh operatorov”, DAN SSSR, 144:2 (1962), 268–271 | MR | Zbl

[3] Lifshits I. M., “Ob odnoi zadache teorii vozmuschenii”, UMN, 7:1 (1952), 171–180 | MR | Zbl

[4] Birman M. Sh., Krein M. G., “K teorii volnovykh operatorov i operatorov rasseyaniya”, DAN SSSR, 144:3 (1962), 475–478 | MR | Zbl

[5] Birman M. Sh., Yafaev D. R., “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl

[6] Peller V. V., “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funktsion. analiz i ego pril., 19:2 (1985), 37–51 | MR | Zbl

[7] Lyubishkin V. A., Sadovnichii V. A., “Formuly sledov v teorii vozmuschenii”, DAN SSSR, 300:5 (1988), 1064–1066

[8] Krein M. G., “Ob opredelitelyakh vozmuscheniya i formule sledov dlya nekotorykh par operatorov”, J. Oper. Theory, 17:1 (1987), 129–187 | MR | Zbl

[9] Sakhnovich L. A., “Dissipativnye operatory s absolyutno nepreryvnym spektrom”, Tr. MMO, 19, URSS, M., 1968, 211–270 | MR | Zbl

[10] Adamyan V. M., Pavlov B. S., “Formula sledov dlya dissipativnykh operatorov”, Vestn. LGU. Ser. matem., mekh., 1979, no. 7, 5–9 | MR | Zbl

[11] Rybkin A. V., “Formuly sledov dlya rezonansov”, TMF, 56:3 (1983), 439–447 | MR | Zbl

[12] Neidthardt H., Eine mathematische Strentheory fur maximal dissipative Operatoren, Report R-MATH-03/86, Karl Weierstrass Institut fur Mathematic. AdW der DDR, Berlin, 1986

[13] Neidhardt H., “Scattering matrix and spectral shift of the nuclear dissipative scattering theory”, Operators in indefinite metric spaces, scattering theory and other topics, Birkhäuzer; Verlag, Basel, 1987, 237–250 | MR

[14] Neidhardt H., “Scattering matrix and spectral shift of the nuclear dissipative scattering theory, II”, J. Operator Theory, 19:1 (1988), 43–62 | MR | Zbl

[15] Adamjan V. M., Neidhardt H., “On the summability of the spectral shift function for pair of contractions and dissipative operators”, J. Operator Theory, 24:1 (1990), 187–206 | MR | Zbl

[16] Rybkin A. V., “Funktsiya spektralnogo sdviga dlya dissipativnogo i samosopryazhennogo operatorov i formula sledov dlya rezonansov”, Matem. sb., 125:3 (1984), 420–430 | MR | Zbl

[17] Rybkin A. V., “Formula sledov dlya dissipativnogo i samosopryazhennogo operatorov i spektralnye tozhdestva dlya rezonansov”, Vestnik LGU. Ser. matem., mekh., 19 (1984), 97–99 | MR

[18] Rybkin A. V., “Formula sledov dlya szhimayuschego i unitarnogo operatorov”, FA, 21:4 (1987), 85–87 | MR

[19] Akopyan R. V., “O formule sledov v teorii vozmuschenii dlya $J$-neotritsatelnykh operatorov”, DAN AN Arm.SSR, 1973, 193–199

[20] Rybkin A. V., “Diskretnyi i singulyarnyi spektr v formule sledov dlya szhimayuschego i unitarnogo operatorov”, FA, 23:3 (1989), 84–85 | MR

[21] Rybkin A. V., “Funktsionalnoe ischislenie dlya szhatii c absolyutno nepreryvnym spektrom i operatornaya mera Karlesona”, DAN SSSR, 326:3 (1992), 417–420 | MR | Zbl

[22] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[23] Nikolskii N. K., Khruschev S. V., “Funktsionalnaya model i nekotorye zadachi spektralnoi teorii funktsii”, Tr. MIAN, 1087, no. 176, Nauka, M., 97–210

[24] Adamyan V. M., Arov D. Z., “Ob unitarnykh stsepleniyakh poluunitarnykh operatorov”, Matem. issledovaniya, 2:1 (1966), 3–64 | MR

[25] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR. Ser. matem., 39:1 (1975), 123–148 | MR | Zbl

[26] Pavlov B. S., “Uchet poter v zadachakh rasseyaniya”, Matem. sb., 97:1 (1975), 77–94 | MR

[27] Ulyanov P. L., “Ob $A$-integrale Koshi”, UMN, 11:5 (1956), 223–229 | MR | Zbl

[28] Aleksandrov A. B., “Ob $A$-integriruemosti granichnykh znachenii garmonicheskikh funktsii”, Matem. zametki, 30:1 (1981), 59–72 | MR | Zbl

[29] Salimov T. S., “$A$-integral i garmonichnye znacheniya analiticheskikh funktsii”, Matem. sb., 136:1 (1988), 24–40 | MR | Zbl

[30] Vinogradov I. A., Skvortsov V. A., Itogi nauki i tekhniki. Matem. analiz–1970, VINITI, M., 1971, 65–107 | Zbl

[31] Matsaev V. I., Solomyak M. Z., “Ob usloviyakh suschestvovaniya integrala Stiltesa”, Matem. sb., 88:4 (1972), 522–535 | MR | Zbl

[32] Vartanyan G. M., “Ob odnoi rezonansnoi teoreme”, Izv. vuzov, matem., 1990, no. 8, 3–13 | MR | Zbl

[33] Rybkin A. V., “Dvoistvennost klassov Lipshitsa i Besova i $B$-integral Stiltesa”, Matem. zametki, 53:1 (1993), 104–110 | MR | Zbl

[34] Ochan Yu. S., “Obobschennyi integral”, Matem. sb., 28 (1951), 293–336 | MR | Zbl

[35] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[36] Lukashenko T. P., “Integriruemye po Boksu neizmerimye funktsii”, Matem. zametki, 17:1 (1975), 49–56 | MR | Zbl

[37] Pannikov B. V., “O vzaimootnoshenii $A$ i $B$-integralov”, Matem. sb., 129:3 (1986), 407–421 | MR | Zbl

[38] Hellinger E., “Nene Begrundung der Theorie quadratischer Formen von unendlichrielen Veranderlichen”, Journ. für Math., 136 (1909), 219–271

[39] Rybkin A. V., “$B$-integral Stiltesa i summirovanie spektralnykh razlozhenii nekotorykh klassov szhimayuschikh operatorov”, DAN SSSR, 319:3 (1991), 562–566 | MR | Zbl

[40] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR

[41] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[42] Rybkin A. V., “Convergence of argument of Blaschke products in $L_p$-metrics”, Proceedings of Amer. Math. Society, 111:3 (1991), 701–708 | DOI | MR | Zbl

[43] Linden S., “On Blaschke products diverging everywhere on the boundary of the unit disk”, Proc. Amer. Math. Soc., 55 (1976), 62–64 | DOI | MR | Zbl

[44] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[45] Hruscer S. V., Vinogradov S. A., “Free interpolation in the space of uniformly convergent Taylor series”, Lectures Notes in Math., 864, 1981, 172–213

[46] Salimov T. S., “O sopryazhennoi funktsii”, Tezisy doklada na vsesoyuznoi shkole-konferentsii “Sovremen. probl. teorii funkts.”, Baku, 1989, 96

[47] Naboko S. N., “Netangentsialnye granichnye znacheniya operatornykh $R$-funktsii v poluploskosti”, Algebra i analiz, 1:5 (1989), 197–222 | MR

[48] Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya v teorii rasseyaniya”, Tr. MIAN, 147, Nauka, M., 86–114 | MR | Zbl

[49] Makarov N. G., Vasjunin V. I., “A model for noncontractions and stability of the continuous spectrum”, Lectures Notes in Math., 864, 1981, 365–412 | MR | Zbl

[50] Neidhardt H., “A nuclear dissipative scattering theory”, J. Oper. Theory, 14 (1985), 57–66 | MR | Zbl

[51] Solomyak B. M., “Teoriya rasseyaniya dlya pochti unitarnykh operatorov i funktsionalnaya model”, Zapiski nauch. sem. LOMI, 178, Nauka, L., 92–120

[52] Baungartel H., Wollenberg M., Mathematical scattering theory, Akademie-Verlag, Berlin, 1983 | MR

[53] Pavlov B. S., Teoriya dilatatsii i spektralnyi analiz nesamosopryazhennykh differentsialnykh operatorov, TsEMI AN SSSR, M., 1976, 3–70

[54] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[55] Colojoara I., Foias C., Theory of generalized spectral operators, Gordon and Breach, 1968 | MR | Zbl

[56] Veselov V. F., Naboko S. N., “Opredelitel kharakteristicheskoi funktsii i singulyarnyi spektr nesamosopryazhennogo operatora”, Matem. sb., 129:1 (1986), 20–29 | MR

[57] Cheremshantsev S. E., “Ob usrednenii rasseyaniya uravneniya Shrëdingera s potentsialom, zavisyaschim ot vremeni sluchainym obrazom”, DAN SSSR, 266:3 (1982), 597–601 | MR | Zbl

[58] Cheremshantsev S. E., “Kvantovoe rasseyanie na brounovskoi chastitse s kompleksnym potentsialom”, TMF, 56:1 (1983), 125–130 | MR