The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 237-281
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be a contraction that is a trace class perturbation of a unitary operator $V$, and let
$\{\lambda_k\}$ be the discrete spectrum of $T$. For a sufficiently large class of functions $\Phi$ the trace formula
$$
\operatorname{tr}\{\Phi(T)-\Phi (V)\}=\sum_k\{\Phi(\lambda_k)-\Phi(\lambda_k/|\lambda_k|)\}+(B)\int_0^{2\pi}\Phi'(e^{i\varphi})\,d\Omega(\varphi),
$$
holds. This formula is a direct analogue of the well-known M. G. Krein trace formula for unitary operators. It is natural to call the function $\Omega$ the spectral shift distribution. Generally speaking, it is not of bounded variation; however, the integral in the trace formula exists in the wider $B$-sense. In the present paper an explicit representation is obtained
for $\Omega$ in terms of the characteristic function $\Theta(\lambda)$ of
the contraction $T$, and also a relation between a certain derivative $\Omega'$ and the scattering matrix $S(\varphi)$ of the pair $(T,V)$:
$$
\det S(\varphi)=\exp\{-2\pi i\overline{\Omega'(\varphi)}\,\} \quad \textrm{a.e.\ with respect to Lebesgue measure}
$$
is established. A necessary and sufficient condition that $\Omega$ have bounded variation is obtained. In particular, the necessary and sufficient condition requires that the singular spectrum of the contraction $T$ be empty. The main results are complete.
@article{SM_1995_83_1_a11,
author = {A. V. Rybkin},
title = {The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral},
journal = {Sbornik. Mathematics},
pages = {237--281},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a11/}
}
TY - JOUR AU - A. V. Rybkin TI - The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral JO - Sbornik. Mathematics PY - 1995 SP - 237 EP - 281 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a11/ LA - en ID - SM_1995_83_1_a11 ER -
A. V. Rybkin. The spectral shift function, the~characteristic function of a~contraction, and a~generalized integral. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 237-281. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a11/