Orders of moduli of continuity of operators of almost best approximation
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 1-22
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a normed linear space, $Y\subset X$ a finite-dimensional subspace,
$\varepsilon>0$. A multiplicative $\varepsilon$-selection $M\colon K\to Y$, where $K\subset X$, is a single-valued mapping such that
$$
\forall\,x\in K\qquad \|Mx-x\|\leqslant\inf\{\|x-y\|:y\in Y\}\cdot(1+\varepsilon).
$$ It is proved in the paper that when $X=L^p(T,\Sigma,\mu)$, $1$, for any
$Y\subset X$ and $\varepsilon>0$ there exists an $\varepsilon$-selection $M\colon K\to Y$ such that
$$
\forall\,x_1,x_2\in K\qquad \|Mx_1-Mx_2\|\leqslant c(n,p)(1+\varepsilon^{-|1/2-1/p|})\|x_1-x_2\|,
$$
where the estimate is order-sharp in the space $L^p[0,1]$. It is also established that the Lipschitz constant for the $\varepsilon$-selection is of proximate order
$1/\varepsilon$ in the spaces $L^1[0,1]$ and $C[0,1]$.
@article{SM_1995_83_1_a0,
author = {P. V. Al'brecht},
title = {Orders of moduli of continuity of operators of almost best approximation},
journal = {Sbornik. Mathematics},
pages = {1--22},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/}
}
P. V. Al'brecht. Orders of moduli of continuity of operators of almost best approximation. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/