, for any $Y\subset X$ and $\varepsilon>0$ there exists an $\varepsilon$-selection $M\colon K\to Y$ such that $$ \forall\,x_1,x_2\in K\qquad \|Mx_1-Mx_2\|\leqslant c(n,p)(1+\varepsilon^{-|1/2-1/p|})\|x_1-x_2\|, $$ where the estimate is order-sharp in the space $L^p[0,1]$. It is also established that the Lipschitz constant for the $\varepsilon$-selection is of proximate order $1/\varepsilon$ in the spaces $L^1[0,1]$ and $C[0,1]$.
@article{SM_1995_83_1_a0,
author = {P. V. Al'brecht},
title = {Orders of moduli of continuity of operators of almost best approximation},
journal = {Sbornik. Mathematics},
pages = {1--22},
year = {1995},
volume = {83},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/}
}
P. V. Al'brecht. Orders of moduli of continuity of operators of almost best approximation. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/
[1] Bernshtein S. N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, Ch. 1, ONTI, L.-M., 1937
[2] Björnestal B. O., “Local Lipschitz continuity of the metric projection operator”, Banach Center Publication, 4, 1979, 43–54 | MR
[3] Krein M. G., “$L$-problema v abstraktnom lineinom normirovannom prostranstve”, V kn.: Akhiezer N. I., Krein M. G., O nekotorykh voprosakh teorii momentov, Kharkov, 1938
[4] Galkin P. V., “O module nepreryvnosti operatora nailuchshego priblizheniya v prostranstve nepreryvnykh funktsii”, Matem. zametki, 10:6 (1971), 601–614 | MR
[5] Kolushov A. V., “Zadacha korrektnosti nailuchshego priblizheniya v prostranstve nepreryvnykh funktsii”, Matem. zametki, 23:3 (1978), 351–360 | MR | Zbl
[6] Wulbert D. E., “Continuity of metric projections”, Approximation theory in a normed llinear lattice, Univ. Texas Comp. Center Austin, Thes., 1966, 105
[7] Liskovets O. A., “Metod $\varepsilon $-kvazireshenii dlya uravnenii 1-go roda”, Differents. uravneniya, 9:10 (1973), 1861–1881
[8] Berdyshev V. I., “Varirovanie normy v zadache o nailuchshem priblizhenii”, Matem. zametki, 29:9 (1981), 181–196 | MR | Zbl
[9] Berdyshev V. I., “Ekvivalentnost ravnomernoi nepreryvnosti metricheskoi proektsii i $\nu$-proektsii”, Matem. zametki, 28:4 (1980), 571–582 | MR | Zbl
[10] Marinov A. V., “Ustoichivost $\varepsilon $-kvazireshenii operatornykh uravnenii 1-go roda”, Priblizhenie funktsii polinomami i splainami, Sb., UNTs AN SSSR, Sverdlovsk, 1985, 105–117 | MR
[11] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[12] Distel Dzh., Geometriya banakhova prostranstva, Vischa shkola, Kiev, 1980
[13] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl
[14] Positselskii E. D., “O lipshitsevykh otobrazheniyakh v prostranstve vypuklykh tel”, Sb. trudov, Optimizatsiya, no. 4(21), 1971, 83–89
[15] Gryunbaum B., Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR | Zbl
[16] Holmes R., Kripke B., “Smootness of approximation”, Mich. Math. J., 15:2 (1968), 225–248 | DOI | MR | Zbl
[17] Berdyshev V. I., “Metricheskaya proektsiya na konechnomernye podprostranstva v $C$ i $L$”, Matem. zametki, 18:4 (1975), 473–488 | MR | Zbl
[18] Wegmann R., “Bounds for nearly best approximations”, Proc. Amer. Math. Soc., 52 (1975), 252–256 | DOI | MR | Zbl
[19] Kadets M. I., “O topologicheskoi ekvivalentnosti ravnomerno vypuklykh prostranstv”, UMN, 10:4 (1955), 137–141 | MR | Zbl
[20] Shapiro H. S., Topics in approximation theory, Lecture Notes in Mathematics, 187, Berlin, 1971 | MR
[21] Michael E., “Continuos selestions”, Ann. of Math. Ser. 2, 63:2 (1956), 361–381 | DOI | MR