Orders of moduli of continuity of operators of almost best approximation
Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 1-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a normed linear space, $Y\subset X$ a finite-dimensional subspace, $\varepsilon>0$. A multiplicative $\varepsilon$-selection $M\colon K\to Y$, where $K\subset X$, is a single-valued mapping such that $$ \forall\,x\in K\qquad \|Mx-x\|\leqslant\inf\{\|x-y\|:y\in Y\}\cdot(1+\varepsilon). $$ It is proved in the paper that when $X=L^p(T,\Sigma,\mu)$, $1$, for any $Y\subset X$ and $\varepsilon>0$ there exists an $\varepsilon$-selection $M\colon K\to Y$ such that $$ \forall\,x_1,x_2\in K\qquad \|Mx_1-Mx_2\|\leqslant c(n,p)(1+\varepsilon^{-|1/2-1/p|})\|x_1-x_2\|, $$ where the estimate is order-sharp in the space $L^p[0,1]$. It is also established that the Lipschitz constant for the $\varepsilon$-selection is of proximate order $1/\varepsilon$ in the spaces $L^1[0,1]$ and $C[0,1]$.
@article{SM_1995_83_1_a0,
     author = {P. V. Al'brecht},
     title = {Orders of moduli of continuity of operators of almost best approximation},
     journal = {Sbornik. Mathematics},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/}
}
TY  - JOUR
AU  - P. V. Al'brecht
TI  - Orders of moduli of continuity of operators of almost best approximation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1
EP  - 22
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/
LA  - en
ID  - SM_1995_83_1_a0
ER  - 
%0 Journal Article
%A P. V. Al'brecht
%T Orders of moduli of continuity of operators of almost best approximation
%J Sbornik. Mathematics
%D 1995
%P 1-22
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/
%G en
%F SM_1995_83_1_a0
P. V. Al'brecht. Orders of moduli of continuity of operators of almost best approximation. Sbornik. Mathematics, Tome 83 (1995) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/SM_1995_83_1_a0/