On the structure of quasiminimal sets of foliations on surfaces
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 397-424

Voir la notice de l'article provenant de la source Math-Net.Ru

Foliations on compact surfaces are considered in this paper. The structure of a quasiminimal set is studied, and criteria for the recurrence of a nonclosed leaf are proved. The concept of an amply situated quasiminimal set is introduced, and the nonexistence of such sets on some orientable and nonorientable surfaces is proved. A sharp estimate of the number of quasiminimal sets of foliations on compact surfaces is given. These results are applied to an estimate of the number of one-dimensional basic sets of $A$-diffeomorphisms of surfaces.
@article{SM_1995_82_2_a9,
     author = {S. Kh. Aranson and E. V. Zhuzhoma},
     title = {On the structure of quasiminimal sets of foliations on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {397--424},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a9/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - E. V. Zhuzhoma
TI  - On the structure of quasiminimal sets of foliations on surfaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 397
EP  - 424
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a9/
LA  - en
ID  - SM_1995_82_2_a9
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A E. V. Zhuzhoma
%T On the structure of quasiminimal sets of foliations on surfaces
%J Sbornik. Mathematics
%D 1995
%P 397-424
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a9/
%G en
%F SM_1995_82_2_a9
S. Kh. Aranson; E. V. Zhuzhoma. On the structure of quasiminimal sets of foliations on surfaces. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 397-424. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a9/