On divergence of Fourier--Walsh series of bounded functions on sets of measure zero
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 365-372

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that for an arbitrary number $p$, $1\leqslant p\infty$, and any set of measure zero there exists a function in $L^p(0,\, 1)$ whose Fourier–Walsh–Paley series diverges on the set. In this paper we prove an analogous result in the case $p=\infty$ for Fourier–Walsh series (Fourier–Walsh–Paley series and Fourier–Walsh–Kaczmarz series).
@article{SM_1995_82_2_a7,
     author = {V. M. Bugadze},
     title = {On divergence of {Fourier--Walsh} series of bounded functions on sets of measure zero},
     journal = {Sbornik. Mathematics},
     pages = {365--372},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a7/}
}
TY  - JOUR
AU  - V. M. Bugadze
TI  - On divergence of Fourier--Walsh series of bounded functions on sets of measure zero
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 365
EP  - 372
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a7/
LA  - en
ID  - SM_1995_82_2_a7
ER  - 
%0 Journal Article
%A V. M. Bugadze
%T On divergence of Fourier--Walsh series of bounded functions on sets of measure zero
%J Sbornik. Mathematics
%D 1995
%P 365-372
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a7/
%G en
%F SM_1995_82_2_a7
V. M. Bugadze. On divergence of Fourier--Walsh series of bounded functions on sets of measure zero. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 365-372. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a7/