On divergence of Fourier--Walsh series of bounded functions on sets of measure zero
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 365-372
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that for an arbitrary number $p$, $1\leqslant p\infty$, and any set of measure zero there exists a function in $L^p(0,\, 1)$ whose Fourier–Walsh–Paley series diverges on the set. In this paper we prove an analogous result in the case $p=\infty$ for Fourier–Walsh series (Fourier–Walsh–Paley series and Fourier–Walsh–Kaczmarz series).
			
            
            
            
          
        
      @article{SM_1995_82_2_a7,
     author = {V. M. Bugadze},
     title = {On divergence of {Fourier--Walsh} series of bounded functions on sets of measure zero},
     journal = {Sbornik. Mathematics},
     pages = {365--372},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a7/}
}
                      
                      
                    V. M. Bugadze. On divergence of Fourier--Walsh series of bounded functions on sets of measure zero. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 365-372. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a7/
