On the theory of singular expansion in a tensor product of Hilbert spaces
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 357-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximation of an element in a tensor product of Hilbert spaces by a sum of products of elements in each of these spaces is considered. The existence of best approximation and the convergence of bilinear series are proved. An explicit representation for the best approximation is obtained. Analogous results in the Sobolev spaces $W_2^{p,q}(\Pi)$ are given as corollaries.
@article{SM_1995_82_2_a6,
     author = {V. V. Pospelov},
     title = {On the theory of singular expansion in a~tensor product of {Hilbert} spaces},
     journal = {Sbornik. Mathematics},
     pages = {357--364},
     year = {1995},
     volume = {82},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a6/}
}
TY  - JOUR
AU  - V. V. Pospelov
TI  - On the theory of singular expansion in a tensor product of Hilbert spaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 357
EP  - 364
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a6/
LA  - en
ID  - SM_1995_82_2_a6
ER  - 
%0 Journal Article
%A V. V. Pospelov
%T On the theory of singular expansion in a tensor product of Hilbert spaces
%J Sbornik. Mathematics
%D 1995
%P 357-364
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a6/
%G en
%F SM_1995_82_2_a6
V. V. Pospelov. On the theory of singular expansion in a tensor product of Hilbert spaces. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 357-364. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a6/

[1] Gursa E., Kurs matematicheskogo analiza, T. 3. Chast 2, Onti, 1934

[2] Agranovskii M. L., Baglai R. D., “Ob odnom razlozhenii v gilbertovom prostranstve”, Zhurnal vychisl. matem. i matem. fiz., 17:4 (1977), 871–878 | MR | Zbl

[3] Arnold V. I., “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR

[4] Baglai R. D., Smirnov K. K., “K obrabotke dvumernykh signalov na EVM”, Zhurnal vychisl. matem. i matem. fiz., 15:1 (1975), 241–248 | MR | Zbl

[5] Vitushkin A. G., “O vozmozhnosti predstavleniya funktsii superpozitsiyami funktsii ot menshego chisla peremennykh”, Trudy mezhdunarodnogo kongressa matematikov (1966)

[6] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114:5 (1957), 953–956 | MR

[7] Ofman Yu. P., “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izvestiya AN SSSR. Ser. matem., 25:2 (1961), 239–252 | MR | Zbl

[8] Pospelov V. V., O priblizhenii funktsii neskolkikh peremennykh proizvedeniyami funktsii odnogo peremennogo, Preprint No 32, IPM AN SSSR, M., 1978 | MR

[9] Pospelov V. V., “O pogreshnosti priblizheniya funktsii dvukh peremennykh summami proizvedenii funktsii odnogo peremennogo”, Zhurnal vychisl. matem. i matem. fiz., 18:5 (1978), 1307–1308 | MR | Zbl

[10] Pospelov V. V., “O priblizhenii funktsii dvukh peremennykh summoi proizvedenii funktsii odnogo peremennogo v prostranstvakh Soboleva”, Vestn. MGU. Ser. 1. Matematika. Mekhanika, 1990, no. 1, 6–10 | MR | Zbl

[11] Temlyakov V. N., “Otsenki nailuchshikh bilineinykh priblizhenii funktsii dvukh peremennykh i nekotorye ikh prilozheniya”, Matem. sb., 134(176):1(9) (1987), 93–107 | MR | Zbl

[12] Khavinson S. Ya., “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi (x)+ \psi (y)$”, Izvestiya AN SSSR. Ser. matem., 33:3 (1969), 650–666 | MR | Zbl

[13] Shura-Bura M. R., “Approksimatsiya funktsii mnogikh peremennykh funktsiyami, kazhdaya iz kotorykh zavisit ot odnogo peremennogo”, Vychisl. matem., 1957, no. 2, 3–19 | MR | Zbl

[14] Bari N. K., “Memoire sur la representation finie des fonctions continues”, Math. Ann., 103 (1930), 185–248 ; 598–653 | DOI | MR

[15] Collatz L., “Approximation by functions of fewer variables”, Lect. Notes in Math., 280, 1972, 16–31 | MR | Zbl

[16] Rau C. R., Mitra S. K., Generalized inverse of matrices and its applications, Wiley, N.-Y., 1971 | MR

[17] Sevcik V., “Algoritms for separations of functions of several variables into combinations of functions, each involving only one of the variables”, Inf. Proc. Mach., I5 (1971), 169–182

[18] Schmidt E., “Zur Theorie der linearen und nichtlinearen Integral-gleichungen”, Math. Ann., 68 (1907), 433–476 | DOI | MR

[19] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, M., 1965

[20] König H., Eigenvalue Distribution of Compact Operators, Köln, 1981