On the theory of singular expansion in a~tensor product of Hilbert spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 357-364
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Approximation of an element in a tensor product of Hilbert spaces by a sum of products of elements in each of these spaces is considered. The existence of best approximation and the convergence of bilinear series are proved. An explicit representation for the best approximation is obtained. Analogous results in the Sobolev spaces $W_2^{p,q}(\Pi)$ are given as corollaries.
			
            
            
            
          
        
      @article{SM_1995_82_2_a6,
     author = {V. V. Pospelov},
     title = {On the theory of singular expansion in a~tensor product of {Hilbert} spaces},
     journal = {Sbornik. Mathematics},
     pages = {357--364},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a6/}
}
                      
                      
                    V. V. Pospelov. On the theory of singular expansion in a~tensor product of Hilbert spaces. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 357-364. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a6/
