On the Cauchy transform of functionals on a~Bergman space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 327-336
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The strong dual space of the Bergman space
$$
B_2(G)=\biggl\{f\in H(G):\|f\|_{B_2(G)}^2=\int_G|f(x)|^2\,d\mathrm{v}(z)\infty\biggr\},
$$
is described in terms of the Cauchy transformation, where $\mathrm{v}(z)$ is Lebesgue measure and $G$ is a simply connected domain with boundary of class $C^{1+0}$. As a normed space, $B_2^*(G)$ is isomorphic to the space
$$
B_2^1(\mathbb{C}\setminus \overline G)
=\biggl\{\gamma (\zeta )\in H(\mathbb{C}\setminus \overline G), \gamma (\infty )=0:
\|\gamma \|_{B_2^1(\mathbb C\setminus\overline G)}^2
=\int_{{\mathbb C}\setminus {\overline G}}
|\gamma'(\zeta )|^2\,d\mathrm{v}(\zeta)\infty\biggr\}.
$$
An example is given of a domain with nonsmooth boundary for which the spaces $B_2^*(G)$ and $B_2^1(\mathbb C\setminus\overline G)$ are not isomorphic.
			
            
            
            
          
        
      @article{SM_1995_82_2_a4,
     author = {V. V. Napalkov and R. S. Yulmukhametov},
     title = {On the {Cauchy} transform of functionals on {a~Bergman} space},
     journal = {Sbornik. Mathematics},
     pages = {327--336},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/}
}
                      
                      
                    V. V. Napalkov; R. S. Yulmukhametov. On the Cauchy transform of functionals on a~Bergman space. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 327-336. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/
