On the Cauchy transform of functionals on a Bergman space
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 327-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The strong dual space of the Bergman space $$ B_2(G)=\biggl\{f\in H(G):\|f\|_{B_2(G)}^2=\int_G|f(x)|^2\,d\mathrm{v}(z)<\infty\biggr\}, $$ is described in terms of the Cauchy transformation, where $\mathrm{v}(z)$ is Lebesgue measure and $G$ is a simply connected domain with boundary of class $C^{1+0}$. As a normed space, $B_2^*(G)$ is isomorphic to the space $$ B_2^1(\mathbb{C}\setminus \overline G) =\biggl\{\gamma (\zeta )\in H(\mathbb{C}\setminus \overline G), \gamma (\infty )=0: \|\gamma \|_{B_2^1(\mathbb C\setminus\overline G)}^2 =\int_{{\mathbb C}\setminus {\overline G}} |\gamma'(\zeta )|^2\,d\mathrm{v}(\zeta)<\infty\biggr\}. $$ An example is given of a domain with nonsmooth boundary for which the spaces $B_2^*(G)$ and $B_2^1(\mathbb C\setminus\overline G)$ are not isomorphic.
@article{SM_1995_82_2_a4,
     author = {V. V. Napalkov and R. S. Yulmukhametov},
     title = {On the {Cauchy} transform of functionals on {a~Bergman} space},
     journal = {Sbornik. Mathematics},
     pages = {327--336},
     year = {1995},
     volume = {82},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - R. S. Yulmukhametov
TI  - On the Cauchy transform of functionals on a Bergman space
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 327
EP  - 336
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/
LA  - en
ID  - SM_1995_82_2_a4
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A R. S. Yulmukhametov
%T On the Cauchy transform of functionals on a Bergman space
%J Sbornik. Mathematics
%D 1995
%P 327-336
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/
%G en
%F SM_1995_82_2_a4
V. V. Napalkov; R. S. Yulmukhametov. On the Cauchy transform of functionals on a Bergman space. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 327-336. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[3] Gaier D., Lektsii po approksimatsii v kompleksnoi oblasti, Mir, M., 1984

[4] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 1, Nauka, M., 1976 | MR

[5] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[6] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986

[7] Krein S. G. i dr., Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl

[8] Köthe G., “Dualität in der Funktionen theorie”, J. Reine und angew. Math., 191:1/2 (1953), 30–49 | MR | Zbl

[9] Calderon A. P., “Cauchi integrals on Lipschitz curves and related operators”, Proc. Nat. Akad. Sci. USA, 1324–1327 | MR | Zbl

[10] Lyubarskii Yu. I., “Teorema Vinera–Peli dlya vypuklykh mnozhestv”, Izv. AN Arm.SSR. Matematika, 23 (1988), 162–172 | MR

[11] Lutsenko V. I., Yulmukhametov R. S., “Obobscheniya teoremy Vinera–Peli na prostranstva Smirnova”, Tr. MIAN, 200, Nauka, M., 1991, 245–254 | MR | Zbl