@article{SM_1995_82_2_a4,
author = {V. V. Napalkov and R. S. Yulmukhametov},
title = {On the {Cauchy} transform of functionals on {a~Bergman} space},
journal = {Sbornik. Mathematics},
pages = {327--336},
year = {1995},
volume = {82},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/}
}
V. V. Napalkov; R. S. Yulmukhametov. On the Cauchy transform of functionals on a Bergman space. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 327-336. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a4/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[3] Gaier D., Lektsii po approksimatsii v kompleksnoi oblasti, Mir, M., 1984
[4] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 1, Nauka, M., 1976 | MR
[5] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR
[6] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986
[7] Krein S. G. i dr., Funktsionalnyi analiz, Nauka, M., 1972 | MR | Zbl
[8] Köthe G., “Dualität in der Funktionen theorie”, J. Reine und angew. Math., 191:1/2 (1953), 30–49 | MR | Zbl
[9] Calderon A. P., “Cauchi integrals on Lipschitz curves and related operators”, Proc. Nat. Akad. Sci. USA, 1324–1327 | MR | Zbl
[10] Lyubarskii Yu. I., “Teorema Vinera–Peli dlya vypuklykh mnozhestv”, Izv. AN Arm.SSR. Matematika, 23 (1988), 162–172 | MR
[11] Lutsenko V. I., Yulmukhametov R. S., “Obobscheniya teoremy Vinera–Peli na prostranstva Smirnova”, Tr. MIAN, 200, Nauka, M., 1991, 245–254 | MR | Zbl