On scattering by bodies with narrow channels
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 293-313 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value problems are considered for the Helmholtz equation outside a domain having a finite cavity of small 'radius' $\varepsilon\ll1$. It is shown that in the case of Neumann boundary conditions the analytic continuation of the solution of the boundary value problem has poles with small imaginary part. The method of matching asymptotic expansions is used to construct asymptotic expressions for these poles with respect to the small parameter $\varepsilon$, and it is shown that they have a resonance character.
@article{SM_1995_82_2_a2,
     author = {R. R. Gadyl'shin},
     title = {On scattering by bodies with narrow channels},
     journal = {Sbornik. Mathematics},
     pages = {293--313},
     year = {1995},
     volume = {82},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a2/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - On scattering by bodies with narrow channels
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 293
EP  - 313
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a2/
LA  - en
ID  - SM_1995_82_2_a2
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T On scattering by bodies with narrow channels
%J Sbornik. Mathematics
%D 1995
%P 293-313
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a2/
%G en
%F SM_1995_82_2_a2
R. R. Gadyl'shin. On scattering by bodies with narrow channels. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 293-313. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a2/

[1] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl

[2] Ilin A. M., “Issledovanie asimptotiki resheniya ellipticheskoi kraevoi zadachi v oblastyakh s malym otverstiem”, Tr. sem. im. I. G. Petrovskogo, 6, Izd-vo Mosk. un-ta, M., 1987, 57–82 | MR

[3] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR

[4] Gadylshin R. R., “Asimptotika sobstvennogo znacheniya singulyarno vozmuschennoi ellipticheskoi zadachi s malym parametrom v granichnom uslovii”, Differents. uravneniya, 22:4 (1986), 640–652 | MR | Zbl

[5] Rayleigh O. M., “The Theory of Helmholtz Resonator”, Proc. Roy. Soc. A, 92:638 (1916), 265–275 | DOI | Zbl

[6] Miles J. W., “Scattering by a Spherical cap”, J. Acoust. Soc. of Am., Pt. 2, 50:3 (1971), 892–903 | DOI | MR

[7] Arsenev A. A., “Ob osobennostyakh analiticheskogo prodolzheniya i rezonansnykh svoistvakh resheniya zadachi rasseyaniya dlya uravneniya Gelmgoltsa”, Zhurn. vychisl. matem. i matem. fiziki, 12:1 (1972), 112–138 | MR | Zbl

[8] Beale J. T., “Scattering Frequencies of Resonators”, Comm. on Pure and Appl. Math., 26:4 (1973), 549–564 | DOI | MR

[9] Petras S. V., “O rasscheplenii serii rezonansov na “nefizicheskom” liste”, Funktsion. analiz i ego pril., 9:2 (1975), 89–90 | MR | Zbl

[10] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[11] Hislop P. D., Martinez A., “Scattering resonances of a Helmholtz resonator”, Indiana Univ. Math. J., 40:2 (1991), 767–788 | DOI | MR | Zbl

[12] Gadylshin R. R., “Ob amplitude kolebanii dlya rezonatora Gelmgoltsa”, DAN SSSR, 310:5 (1990), 1094–1097 | MR

[13] Gadylshin R. R., “Poverkhnostnye potentsialy i metod soglasovaniya asimptoticheskikh razlozhenii v zadache o rezonatore Gelmgoltsa”, Algebra i analiz, 4:2 (1992), 88–115 | MR

[14] Gadylshin R. R., “Rasscheplenie polyusov rezonatora Gelmgoltsa”, Izv. RAN. Ser. matem., 57:5 (1993), 44–74 | MR | Zbl

[15] Fernandez C. A., “Resonances in scattering by a resonator”, Indiana Univ. Math. J., 34 (1985), 115–125 | DOI | MR | Zbl

[16] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[17] Birman M. Sh., “Operatory Maksvella dlya rezonatora s vkhodyaschimi rebrami”, Vestn. LGU, ser. 1, 1986, no. 3, 3–9 | MR

[18] Birman M. G., Solomyak M. Z., “Operatory Maksvella v oblastyakh s negladkoi granitsei”, Sib. matem. zhurn., 27:1 (1987), 23–36 | MR

[19] Majda A., “Outgoing solutions for perturbations of $-\Delta $ with applications to special and scattering theory”, J. Diff. Equat., 16:3 (1974), 515–547 | DOI | MR | Zbl