Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 425-440 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Estimates are obtained for the distances $d(Q,\Gamma)$ from poles of the logarithmic derivative $\theta_Q=Q'/Q$ of a polynomial $Q$ to lines $\Gamma$ of the extended complex plane in dependence on the degree $\deg Q$ of the polynomial $Q$ and the norm of $\theta_Q$ in a certain metric on $\Gamma$. The smallest deviations are defined to be $$ d_n(\Gamma )=\inf \{d(Q,\Gamma ):\|\theta _Q\|_{C(\Gamma )}\leqslant 1, \deg Q\le n\},\qquad n=1,2,\dotsc . $$ In this case if $\Gamma_1$ is the real axis, then $d_n(\Gamma_1)\asymp\ln\ln n/\ln n$, and if $\Gamma_2$ is the unit circle $\vert z\vert=1$, then $d_n(\Gamma_2)\asymp\ln n/n$. When the derivative $\theta'_Q$ is normalized in the metric of $C(\Gamma_1)$, $d_n'(\Gamma_1)\asymp\ln n/\sqrt{n}$ for the corresponding smallest deviation. When $\theta_Q$ is normalized in the metric of $L_p(\Gamma_1)$, $1, the corresponding smallest deviations do not decrease to zero as $n$ increases, and are bounded below by the quantity $1/p(\sin\pi/p)^{p/(p-1)}$.
@article{SM_1995_82_2_a10,
     author = {V. I. Danchenko},
     title = {Estimates of the distances from the~poles of logarithmic derivatives of polynomials to lines and circles},
     journal = {Sbornik. Mathematics},
     pages = {425--440},
     year = {1995},
     volume = {82},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a10/}
}
TY  - JOUR
AU  - V. I. Danchenko
TI  - Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 425
EP  - 440
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a10/
LA  - en
ID  - SM_1995_82_2_a10
ER  - 
%0 Journal Article
%A V. I. Danchenko
%T Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles
%J Sbornik. Mathematics
%D 1995
%P 425-440
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a10/
%G en
%F SM_1995_82_2_a10
V. I. Danchenko. Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 425-440. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a10/

[1] Gorin E. A., “Chastichno gipoellipticheskie differentsialnye uravneniya v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Sib. matem. zhurn., 1962, no. 4, 506–508

[2] Nikolaev E. G., “Geometricheskoe svoistvo kornei mnogochlenov”, Vestn. MGU. Ser. 1. Matem., mekh., 1965, no. 5, 23–26 | MR | Zbl

[3] Gelfond A. O., “Ob otsenke mnimykh chastei kornei mnogochlenov s ogranichennymi proizvodnymi ot logarifmov na deistvitelnoi osi”, Matem. sb., 71(113) (1966), 289–296 | MR | Zbl

[4] Katsnelson V. E., “O nekotorykh operatorakh, deistvuyuschikh v prostranstvakh, porozhdennykh funktsiyami $\frac 1{z-z_k}$”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 4, Kharkov, 1967, 58–66 | Zbl

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[6] Danchenko V. I., Otsenki otkloneniya ot deistvitelnoi osi nulei mnogochlena s normirovannoi logarifmicheskoi proizvodnoi, Dep. VINITI, No 2990-91, 1991, s. 1–21

[7] Danchenko V. I., Otsenki mnimykh chastei polyusov logarifmicheskikh proizvodnykh mnogochlenov, Dep. VINITI, No 1695-92, 1992, s. 1–19

[8] Danchenko V. I., “O skorosti priblizheniya k deistvitelnoi osi polyusov normirovannykh logarifmicheskikh proizvodnykh polinomov”, DAN, 330:1 (1993), 15–16 | MR | Zbl

[9] Pekarskii A. A., “Otsenki proizvodnoi integrala tipa Koshi s meromorfnoi plotnostyu i ikh prilozheniya”, Matem. zametki, 31 (1982), 389–402 | MR | Zbl