Estimates of the distances from the~poles of logarithmic derivatives of polynomials to lines and circles
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 425-440
Voir la notice de l'article provenant de la source Math-Net.Ru
Estimates are obtained for the distances $d(Q,\Gamma)$ from poles of the logarithmic derivative $\theta_Q=Q'/Q$ of a polynomial $Q$ to lines $\Gamma$ of the extended complex plane in dependence on the degree $\deg Q$ of the polynomial $Q$ and the norm of
$\theta_Q$ in a certain metric on $\Gamma$. The smallest deviations are defined to be
$$
d_n(\Gamma )=\inf \{d(Q,\Gamma ):\|\theta _Q\|_{C(\Gamma )}\leqslant 1,
\deg Q\le n\},\qquad n=1,2,\dotsc .
$$
In this case if $\Gamma_1$ is the real axis, then $d_n(\Gamma_1)\asymp\ln\ln n/\ln n$, and if $\Gamma_2$ is the unit circle $\vert z\vert=1$, then $d_n(\Gamma_2)\asymp\ln n/n$. When the derivative $\theta'_Q$ is normalized in the metric of $C(\Gamma_1)$, $d_n'(\Gamma_1)\asymp\ln n/\sqrt{n}$ for the corresponding smallest deviation. When
$\theta_Q$ is normalized in the metric of $L_p(\Gamma_1)$, $1$, the corresponding smallest deviations do not decrease to zero as $n$ increases, and are bounded below by the quantity $1/p(\sin\pi/p)^{p/(p-1)}$.
@article{SM_1995_82_2_a10,
author = {V. I. Danchenko},
title = {Estimates of the distances from the~poles of logarithmic derivatives of polynomials to lines and circles},
journal = {Sbornik. Mathematics},
pages = {425--440},
publisher = {mathdoc},
volume = {82},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a10/}
}
TY - JOUR AU - V. I. Danchenko TI - Estimates of the distances from the~poles of logarithmic derivatives of polynomials to lines and circles JO - Sbornik. Mathematics PY - 1995 SP - 425 EP - 440 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a10/ LA - en ID - SM_1995_82_2_a10 ER -
V. I. Danchenko. Estimates of the distances from the~poles of logarithmic derivatives of polynomials to lines and circles. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 425-440. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a10/