On smoothness up to the~boundary of solutions of parabolic equations with a~degenerate operator
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 271-292
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Parabolic equations $\partial_tu=-Au+f_0$, $ u|_{t=0}=f_1$ are considered that are of second order with a nonnegative quadratic form $a(x,\zeta)$ corresponding to the space variables. This form degenerates on the boundary: $a(x,\nu)=0$, where $\nu$ is the normal vectors, which corresponds to the condition of impermeability of the boundary. Special function spaces $E^s$ with weight are introduced. Semiboundedness of the operator $A$ in these spaces with arbitrary $s$ is proved: $(Av,v)_{E^s}\geqslant -C\|v\|_{E^s}^2$. 
On this basis theorems on the smoothness of solutions for $f_0,f_1\in E^s$ are proved. Theorems on the smoothness of solutions $u(x)$ of the elliptic equation 
$Au + \lambda u = f_0$ are also obtained.
			
            
            
            
          
        
      @article{SM_1995_82_2_a1,
     author = {A. V. Babin and S. Zh. Kabakbaev},
     title = {On smoothness up to the~boundary of solutions of parabolic equations with a~degenerate operator},
     journal = {Sbornik. Mathematics},
     pages = {271--292},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Babin AU - S. Zh. Kabakbaev TI - On smoothness up to the~boundary of solutions of parabolic equations with a~degenerate operator JO - Sbornik. Mathematics PY - 1995 SP - 271 EP - 292 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a1/ LA - en ID - SM_1995_82_2_a1 ER -
A. V. Babin; S. Zh. Kabakbaev. On smoothness up to the~boundary of solutions of parabolic equations with a~degenerate operator. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 271-292. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a1/
