Projective modules over quantum polynomial algebras
Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 261-269 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multiparameter algebra of quantum polynomials with coefficients in an arbitrary division algebra is considered. It is shown that if the multiparameters are in general position, then projective modules of rank at least two over the algebra are free.
@article{SM_1995_82_2_a0,
     author = {V. A. Artamonov},
     title = {Projective modules over quantum polynomial algebras},
     journal = {Sbornik. Mathematics},
     pages = {261--269},
     year = {1995},
     volume = {82},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_2_a0/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Projective modules over quantum polynomial algebras
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 261
EP  - 269
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_2_a0/
LA  - en
ID  - SM_1995_82_2_a0
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Projective modules over quantum polynomial algebras
%J Sbornik. Mathematics
%D 1995
%P 261-269
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_82_2_a0/
%G en
%F SM_1995_82_2_a0
V. A. Artamonov. Projective modules over quantum polynomial algebras. Sbornik. Mathematics, Tome 82 (1995) no. 2, pp. 261-269. http://geodesic.mathdoc.fr/item/SM_1995_82_2_a0/

[1] Artamonov V. A., “Stroenie algebr Khopfa”, Itogi nauki i tekhn. Algebra. Geometriya. Topologiya, 29, VINITI, M., 1991, 3–63 | MR

[2] Passman D., Infinite crossed products, Acad. Press, San Diego, 1989 | MR | Zbl

[3] Alev J., Chamarie M., “Derivations et automorphismes de quelques algèbres quantiques”, Comm. Algebra, 20:6 (1992), 1787–1802 | DOI | MR | Zbl

[4] McConnel J. C., Pettit J. J., “Crossed products and multiplicative analogues of Weyl algebras”, J. London Math. Soc., 38:1 (1988), 47–55 | DOI | MR | Zbl

[5] Stafford J. T., “Endomorphisms of right ideals of the Weyl algebras”, Trans. Amer. Math. Soc., 299 (1987), 623–639 | DOI | MR | Zbl

[6] Artamonov V. A., “Engelevy algebry Khopfa i kvantovyi analog gipotezy Serra”, UMN, 47:5 (1992), 165–166 | MR | Zbl

[7] Resco R., Stafford J. T., Small L. W., “Krull and global dimensions of semiprime Noetherian PI-rings”, Trans. Amer. Math. Soc., 274 (1982), 285–295 | DOI | MR | Zbl

[8] Platonov V. P., Yanchevskii V. I., “Konechnomernye tela”, Itogi nauki i tekhn. Sovr. problemy matem. Fund. napravl., 77, VINITI, M., 1992, 144–267 | MR

[9] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | MR | Zbl

[10] Jacobson N., Structure of rings, Colloq. Publ. AMS, 37, AMS, 1968

[11] Stafford J. T., “Stable structure of non-commutative Noetherian rings”, J. Algebra, 47:2 (1977), 244–267 | DOI | MR | Zbl

[12] Stafford J. T., “Generating modules efficiently: Algebraic $K$-theory for non-commutative Noetherian rings”, J. Algebra, 69:2 (1981), 312–346 | DOI | MR | Zbl

[13] Stafford J. T., “On the stable range of right Noetherian rings”, Bull. London Math. Soc., 13:1 (1981), 39–41 | DOI | MR | Zbl

[14] Quillen D., “Higher algebraic $K$-theory”, Lect. Notes in Math., 341, 1973, 85–147 | MR | Zbl

[15] Artamonov V. A., “Projective modules and groups of invertible matrices over crossed products”, Contemp. Math., 131:2 (1992), 227–235 | MR | Zbl

[16] Stafford J. T., “Stably free projective right ideals”, Compos. Math., 54 (1985), 63–78 | MR | Zbl

[17] Montgomery S., Small L., Non-commutative rings, Springer-Verlag, N.Y., 1992 | Zbl