Hermite–Padé approximants and spectral analysis of nonsymmetric operators
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 199-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of operators related to Hermite–Padé approximants is defined. The spectral analysis of these operators is connected with the asymptotic behavior of polynomials defined by systems of orthogonality relations.
@article{SM_1995_82_1_a8,
     author = {V. A. Kalyagin},
     title = {Hermite{\textendash}Pad\'e approximants and spectral analysis of nonsymmetric operators},
     journal = {Sbornik. Mathematics},
     pages = {199--216},
     year = {1995},
     volume = {82},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a8/}
}
TY  - JOUR
AU  - V. A. Kalyagin
TI  - Hermite–Padé approximants and spectral analysis of nonsymmetric operators
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 199
EP  - 216
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a8/
LA  - en
ID  - SM_1995_82_1_a8
ER  - 
%0 Journal Article
%A V. A. Kalyagin
%T Hermite–Padé approximants and spectral analysis of nonsymmetric operators
%J Sbornik. Mathematics
%D 1995
%P 199-216
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a8/
%G en
%F SM_1995_82_1_a8
V. A. Kalyagin. Hermite–Padé approximants and spectral analysis of nonsymmetric operators. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 199-216. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a8/

[1] Aptekarev A. I., “Asimptotika mnogochlenov sovmestnoi ortogonalnosti v sluchae Anzhelesko”, Matem. sb., 136:1 (1988), 56–84 | MR

[2] Aptekarev A. I., Kalyagin V. A., Asimptotika kornya $n$-i stepeni iz polinomov sovmestnoi ortogonalnosti i algebraicheskie funktsii, Preprint 60, Institut prikladnoi matematiki im. M. V. Keldysha, 1986 | Zbl

[3] Aptekarev A. I., Levitan B. M., “Diskretnyi operator Shturma–Liuvillya i teoriya ortogonalnykh mnogochlenov”, Doklady po matem. i ee pril., T. 3, no. 1, Moskva–Tula, 1990, 421–429

[4] Aptekarev A. I., Nikishin E. M., “Zadacha rasseyaniya dlya diskretnogo operatora Shturma–Liuvillya”, Matem. sb., 121(163) (1983), 327–358 | MR | Zbl

[5] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[6] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[7] Beiker Dzh., Greivs-Morris P., Approksimatsii Pade, Mir, M., 1986 | MR

[8] Bustamante Zh., Lagomasino Lopes G., “Approksimatsii Ermita–Pade dlya sistem Nikishina analiticheskikh funktsii”, Matem. sb., 183:11 (1992), 117–138 | MR | Zbl

[9] Geronimus Ya. L., Teoriya ortogonalnykh mnogochlenov, GTTI, M.–L., 1950

[10] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistemy funktsii markovskogo tipa”, Tr. MIAN, 157, Nauka, M., 1981, 31–48 | MR | Zbl

[11] Gonchar A. A., Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125 (1984), 117–127 | MR

[12] Dzhouns U., Tron V., Nepreryvnye drobi, Mir, M., 1985 | MR

[13] Kalyagin V. A., “Ob odnom klasse polinomov, opredelennykh dvumya sootnosheniyami ortogonalnosti”, Matem. sb., 110 (1979), 609–627 | MR

[14] Kalyagin V. A., “O sovmestnykh priblizheniyakh Pade dvukh logarifmov”, Teoriya funktsii i priblizheniya, Trudy Saratovskoi shkoly po teorii funktsii, T. 2, 1986, 126–130

[15] Kalyagin V. A., “Kharakteristiki spektrov raznostnykh operatorov vysshikh poryadkov i skhodimost sovmestnykh ratsionalnykh approksimatsii”, DAN (to appear)

[16] Krein M. G., Krasnoselskii M. A., “Osnovnye teoremy o rasshireniyakh ermitovykh operatorov i nekotorye ikh primeneniya k teorii ortogonalnykh polinomov i probleme momentov”, UMN, 2:3(19) (1947), 60–106 | MR

[17] Nikishin E. M., “O sisteme markovskikh funktsii”, Vestnik MGU, seriya matematicheskaya, 1979, no. 4, 60–63 | MR | Zbl

[18] Nikishin E. M., “Ob irratsionalnosti znachenii $F(x,s)$”, Matem. sb., 109:3 (1979), 410–417 | MR | Zbl

[19] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113:4 (1980), 499–519 | MR | Zbl

[20] Nikishin E. M., “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Tr. sem. im. I. G. Petrovskogo, 10, Izd-vo Mosk. un-ta, M., 1984, 3–77 | MR | Zbl

[21] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[22] Parusnikov V. I., “Algoritm Yakobi–Perrona i sovmestnoe priblizhenie funktsii”, Matem. sb., 114:2 (1981), 322–333 | MR | Zbl

[23] Parusnikov V. I., “Slabosovershennye sistemy funktsii i mnogomernye nepreryvnye drobi”, Vestnik MGU, seriya matematicheskaya, 1984, no. 2, 13–17 | MR | Zbl

[24] Feldman N. I., Sedmaya problema Gilberta, MGU, M., 1982 | MR

[25] Aptekarev A. I., Kalyagine V. A., “Analytic properties of two dimentional continued $P$-fraction expantions and their Pade–Hermit approximants”, Lecture Notes in Mathematics, 1237, 1987, 145–160 | MR | Zbl

[26] Aptekarev A. I., Kaliaguine V. A., Van Assche W., “Criterion for the resolvent set of nonsymmetric tridiagonal operators”, Trans. Amer. Math. Soc. (to appear) | Zbl

[27] Aptekarev A. I., Stahl H., “Asymptotics of Hermit–Padé polynomials”, Progress in approximation theory, Springer series in Comp. Math., 19, Springer-Verlag, 1992, 127–169 | MR

[28] Bernstain L., The Jacobi–Perron algorithm, Lect. Notes in Math., 207, Springer-Verlag, Berlin, 1971

[29] de Bruin M. G., “Covergence of generalized $C$-fractions”, Journal of Approximation Theory, 24:3 (1978), 177–207 | DOI | MR | Zbl

[30] de Bruin M. G., “Some aspects of simultaneous rational approximation”, Numerical Analysis and Mathematical Modelling, Banach center publication, 24, Warsaw, 1990, 51–84 | MR | Zbl

[31] Demko S., Moss W. F., Smith P. W., “Decay rates for the inverse of band matrices”, Math. Comput., 43 (1984), 491–499 | DOI | MR | Zbl

[32] Geronimo J. S., Case K. M., “Scattering theory and polynomials orthogonal on the real line”, Trans. Amer. Math. Soc., 258 (1980), 467–494 | DOI | MR | Zbl

[33] Hermit C., “Sur la fonction exponentielle”, Oeuvres complete, 3 (1873), 150–18

[34] Kaliaguine V. A., “Polynomes orthogonaux de dimension d et les approximants de Pade– Hermit”, Ouevres sem. AMS, Rouen, France, 1993, 95–102

[35] Mahler K., “Perfect systems”, Composita Mathematica, 19 (1968), 95–166 | MR | Zbl

[36] Siegel C. L., Transcendental numbers, Princeton, 1949 | MR

[37] Shohat J. A., Tamarkin J. D., The problem of moments, Mathematical Surveys, 1, Amer. Math. Soc., Providence, 1943 | MR | Zbl

[38] Van Assche W., “Asymptotics for orthogonal polynomials and three-term recurrences”, Orthogonal Polynomials. Theory and Practice, NATO–ASI series C, 294, ed. P. Nevai, Kluwer Academic Publishers, 1990, 435–462 | MR

[39] Van Iseghem J., Approximants de Pade vectoriels, Thèse, Université de Sciences et Techniques de Lille, France, 1987