On a nonlinear electrolysis problem
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 87-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model proposed by H. Amann for electrochemical reactions is considered. The model is considered in the steady-state case for two differently charged components of a solution. In this case the model reduces to a quasilinear system of two elliptic equations with nonlinear Neumann boundary conditions. In the regular case it is proved that this nonlinear problem is globally solvable in a Sobolev space $W_p^2(\Omega)$ with $p>n$ ($\Omega\subset\mathbb{R}^n$).
@article{SM_1995_82_1_a3,
     author = {S. I. Pokhozhaev},
     title = {On a nonlinear electrolysis problem},
     journal = {Sbornik. Mathematics},
     pages = {87--99},
     year = {1995},
     volume = {82},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a3/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - On a nonlinear electrolysis problem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 87
EP  - 99
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a3/
LA  - en
ID  - SM_1995_82_1_a3
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T On a nonlinear electrolysis problem
%J Sbornik. Mathematics
%D 1995
%P 87-99
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a3/
%G en
%F SM_1995_82_1_a3
S. I. Pokhozhaev. On a nonlinear electrolysis problem. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 87-99. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a3/

[1] Amann H., Reaction-Diffusion Problems in Electrolysis, Preprint Math. Inst., Universitat Zürich, 1992 | MR

[2] Amann H., Renardy M., “Reaction-Diffusion Problems in Electrolysis”, Nonlinear Differential Equations and Applications (to appear) | MR | Zbl

[3] Amann H., “Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems”, Function Spaces, Differential Operators and Nonlinear Analysis, Proceedings of the Conference (20–26 Sept. 1992), Teubner-Texte zur Mathematik, 133, eds. H.-J. Scmeisser, H. Triebel, 1993, 9–126 | MR | Zbl

[4] Fikhtengolts G. M., Kurs differentsialnogo integralnogo ischisleniya. T. 1 (Dopolnenie), Nauka, M., 1966

[5] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl

[6] Bourdaud G., Meyer Y., “Fonctions qui operent sur les espaces de Sobolev, I”, Funct. Anal., 97:2 (1991), 351–360 | DOI | MR | Zbl

[7] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962, 205 pp.

[8] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[9] Nirenberg L., “An extended interpolation inequality”, Ann. Scuola Normale Super., XX, no. IV, Pisa, 1966, 733–737 | MR