On a nonlinear electrolysis problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 87-99
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A mathematical model proposed by H. Amann for electrochemical reactions is considered. The model is considered in the steady-state case for two differently charged components of a solution. In this case the model reduces to a quasilinear system of two elliptic equations with nonlinear Neumann boundary conditions. In the regular case it is proved that this nonlinear problem is globally solvable in a Sobolev space $W_p^2(\Omega)$ with $p>n$ 
($\Omega\subset\mathbb{R}^n$).
			
            
            
            
          
        
      @article{SM_1995_82_1_a3,
     author = {S. I. Pokhozhaev},
     title = {On a nonlinear electrolysis problem},
     journal = {Sbornik. Mathematics},
     pages = {87--99},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a3/}
}
                      
                      
                    S. I. Pokhozhaev. On a nonlinear electrolysis problem. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 87-99. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a3/
