Theorems on the existence of an implicit function in the theory of necessary and sufficient conditions for an extremum
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 65-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The implicit function theorem and its generalizations are widely used in the theory of extremum problems. Two such generalizations are given in this paper. As applications of them certain results on necessary and sufficient conditions for an extremum are proved.
@article{SM_1995_82_1_a2,
     author = {S. V. Burtsev},
     title = {Theorems on the~existence of an~implicit function in the~theory of necessary and sufficient conditions for an~extremum},
     journal = {Sbornik. Mathematics},
     pages = {65--85},
     year = {1995},
     volume = {82},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a2/}
}
TY  - JOUR
AU  - S. V. Burtsev
TI  - Theorems on the existence of an implicit function in the theory of necessary and sufficient conditions for an extremum
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 65
EP  - 85
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a2/
LA  - en
ID  - SM_1995_82_1_a2
ER  - 
%0 Journal Article
%A S. V. Burtsev
%T Theorems on the existence of an implicit function in the theory of necessary and sufficient conditions for an extremum
%J Sbornik. Mathematics
%D 1995
%P 65-85
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a2/
%G en
%F SM_1995_82_1_a2
S. V. Burtsev. Theorems on the existence of an implicit function in the theory of necessary and sufficient conditions for an extremum. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 65-85. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a2/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1980

[2] Burtsev S. V., “Dve teoremy o neyavnoi funktsii”, UMN, 46:3 (1991), 183–184 | MR | Zbl

[3] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[4] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[5] Levitin E. S., “K teorii vozmuschenii negladkikh ekstremalnykh zadach s ogranicheniyami”, DAN SSSR, 224:6 (1975), 1260–1263 | MR | Zbl

[6] Levitin E. S., Teoriya vozmuschenii negladkikh ekstremalnykh zadach s ogranicheniyami, Nauka, M., 1991

[7] Levitin E. S., “O lokalnoi lipshitsevosti funktsii vozmuscheniya beskonechnomernykh nevypuklykh ekstremalnykh zadach s operatornymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, no. 14, VNII sistemnykh issledovanii, M., 1990, 52–58

[8] Sambasivam E. A., Printsip Lagranzha dlya gladko-approksimativno-vypuklykh zadach, Diss. ...kand. fiz.-mat. nauk, Moskva, 1986

[9] Sukhinin M. F., “Pravilo mnozhitelei Lagranzha kak neobkhodimoe i dostatochnoe uslovie kvazikritichnosti otobrazhenii banakhovykh prostranstv”, UMN, 33:2 (1978), 183–184 | MR

[10] Tikhomirov V. M., Printsip Lagranzha i zadachi optimalnogo upravleniya, MGU, M., 1982

[11] Alt W., “Parametric Programming with Applications to Optimal Control”, Bayreuther Math. Schriften, 34 (1990), 1–37

[12] Aubin J.-P., Frankowska H., Set-valued Analysis, Birkhauser, Boston, 1990 | MR | Zbl

[13] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Wiley, Boston, 1987 | MR

[14] Dontchev A. L., Hager W., “Implicit Functions, Lipschitz Maps, and Stability in Optimization”, Math. Oper. Res., 1992 | MR

[15] Fiacco A. V., Ishizuka Yo., “Sensivity and Stability Analysis for Nonlinear Programming”, Annals of Operations Research, 27 (1991), 215–235 | DOI | MR

[16] Jittorntrum K., “Solution point differentiability without strict complimentarity in nonlinear programming”, Math. Progr. Study, 21 (1984), 127–138 | MR | Zbl

[17] Kojima M., “Strongly stable solutions in nonlinear programming”, Analysis and Computation of Fixed Points, ed. Robinson S. M., Academic Press, New York, 1980, 93–138 | MR

[18] Malanowski K., “Sensivity Analysis of Optimization Problems in Hilbert Space with Application to Optimal Control”, Appl. Math. Optim., 21 (1990), 1–20 | DOI | MR | Zbl

[19] Robinson S. M., “Stability theory for the systems of inequalities. 2: Differentiable nonlinear systems”, SIAM J. Num. Anal., 13:4 (1976), 497–513 | DOI | MR | Zbl

[20] Robinson S. M., “Regularity and stability for convex multivalued functions”, Math. Oper. Res., 1, 2 (1976), 130–145 | DOI | MR

[21] Robinson S. M., “Strongly regular generalized equations”, Math. Oper. Res., 5:1 (1980), 43–62 | DOI | MR | Zbl

[22] Robinson S. M., “An Implicit-Function Theorem for a Class of Nonsmooth Functions”, Math. Oper. Res., 16:2 (1991), 292–309 | DOI | MR | Zbl

[23] Ursescu C., “Multifunctions with closed convex graph”, Czech. Math. J., 25 (1975), 438–441 | MR | Zbl