@article{SM_1995_82_1_a2,
author = {S. V. Burtsev},
title = {Theorems on the~existence of an~implicit function in the~theory of necessary and sufficient conditions for an~extremum},
journal = {Sbornik. Mathematics},
pages = {65--85},
year = {1995},
volume = {82},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a2/}
}
TY - JOUR AU - S. V. Burtsev TI - Theorems on the existence of an implicit function in the theory of necessary and sufficient conditions for an extremum JO - Sbornik. Mathematics PY - 1995 SP - 65 EP - 85 VL - 82 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a2/ LA - en ID - SM_1995_82_1_a2 ER -
S. V. Burtsev. Theorems on the existence of an implicit function in the theory of necessary and sufficient conditions for an extremum. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 65-85. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a2/
[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1980
[2] Burtsev S. V., “Dve teoremy o neyavnoi funktsii”, UMN, 46:3 (1991), 183–184 | MR | Zbl
[3] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl
[4] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[5] Levitin E. S., “K teorii vozmuschenii negladkikh ekstremalnykh zadach s ogranicheniyami”, DAN SSSR, 224:6 (1975), 1260–1263 | MR | Zbl
[6] Levitin E. S., Teoriya vozmuschenii negladkikh ekstremalnykh zadach s ogranicheniyami, Nauka, M., 1991
[7] Levitin E. S., “O lokalnoi lipshitsevosti funktsii vozmuscheniya beskonechnomernykh nevypuklykh ekstremalnykh zadach s operatornymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, no. 14, VNII sistemnykh issledovanii, M., 1990, 52–58
[8] Sambasivam E. A., Printsip Lagranzha dlya gladko-approksimativno-vypuklykh zadach, Diss. ...kand. fiz.-mat. nauk, Moskva, 1986
[9] Sukhinin M. F., “Pravilo mnozhitelei Lagranzha kak neobkhodimoe i dostatochnoe uslovie kvazikritichnosti otobrazhenii banakhovykh prostranstv”, UMN, 33:2 (1978), 183–184 | MR
[10] Tikhomirov V. M., Printsip Lagranzha i zadachi optimalnogo upravleniya, MGU, M., 1982
[11] Alt W., “Parametric Programming with Applications to Optimal Control”, Bayreuther Math. Schriften, 34 (1990), 1–37
[12] Aubin J.-P., Frankowska H., Set-valued Analysis, Birkhauser, Boston, 1990 | MR | Zbl
[13] Aubin J.-P., Ekeland I., Applied Nonlinear Analysis, Wiley, Boston, 1987 | MR
[14] Dontchev A. L., Hager W., “Implicit Functions, Lipschitz Maps, and Stability in Optimization”, Math. Oper. Res., 1992 | MR
[15] Fiacco A. V., Ishizuka Yo., “Sensivity and Stability Analysis for Nonlinear Programming”, Annals of Operations Research, 27 (1991), 215–235 | DOI | MR
[16] Jittorntrum K., “Solution point differentiability without strict complimentarity in nonlinear programming”, Math. Progr. Study, 21 (1984), 127–138 | MR | Zbl
[17] Kojima M., “Strongly stable solutions in nonlinear programming”, Analysis and Computation of Fixed Points, ed. Robinson S. M., Academic Press, New York, 1980, 93–138 | MR
[18] Malanowski K., “Sensivity Analysis of Optimization Problems in Hilbert Space with Application to Optimal Control”, Appl. Math. Optim., 21 (1990), 1–20 | DOI | MR | Zbl
[19] Robinson S. M., “Stability theory for the systems of inequalities. 2: Differentiable nonlinear systems”, SIAM J. Num. Anal., 13:4 (1976), 497–513 | DOI | MR | Zbl
[20] Robinson S. M., “Regularity and stability for convex multivalued functions”, Math. Oper. Res., 1, 2 (1976), 130–145 | DOI | MR
[21] Robinson S. M., “Strongly regular generalized equations”, Math. Oper. Res., 5:1 (1980), 43–62 | DOI | MR | Zbl
[22] Robinson S. M., “An Implicit-Function Theorem for a Class of Nonsmooth Functions”, Math. Oper. Res., 16:2 (1991), 292–309 | DOI | MR | Zbl
[23] Ursescu C., “Multifunctions with closed convex graph”, Czech. Math. J., 25 (1975), 438–441 | MR | Zbl