Radó's theorem for CR-mappings of hypersurfaces
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 243-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analogue of Radó's theorem is obtained for CR-mappings of locally Lipschitz hypersurfaces. It is also proved that closed inverse images of pluripolar sets under continuous CR-mappings are removable for bounded CR-functions.
@article{SM_1995_82_1_a12,
     author = {E. M. Chirka},
     title = {Rad\'o's theorem for {CR-mappings} of hypersurfaces},
     journal = {Sbornik. Mathematics},
     pages = {243--259},
     year = {1995},
     volume = {82},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a12/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Radó's theorem for CR-mappings of hypersurfaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 243
EP  - 259
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a12/
LA  - en
ID  - SM_1995_82_1_a12
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Radó's theorem for CR-mappings of hypersurfaces
%J Sbornik. Mathematics
%D 1995
%P 243-259
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a12/
%G en
%F SM_1995_82_1_a12
E. M. Chirka. Radó's theorem for CR-mappings of hypersurfaces. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 243-259. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a12/

[1] Bishop E., “Conditions for the analyticity of cirtain sets”, Michigan Math. J., 11 (1964), 289–304 | DOI | MR | Zbl

[2] Chirka E. M., “Priblizhenie golomorfnymi funktsiyami na gladkikh mnogoobraziyakh v $\mathbb C^n$”, Matem. sb., 78:1 (1969), 101–123 | MR | Zbl

[3] Chirka E. M., “Analiticheskoe predstavlenie CR-funktsii”, Matem. sb., 98:4 (1975), 591–623 | MR | Zbl

[4] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, Moskva, 1985

[5] Chirka E. M., “Vvedenie v geometriyu CR-mnogoobrazii”, UMN, 46 (1991), 81–164 | MR | Zbl

[6] Chirka E. M. and Stout E. L., “Removable singularities on the boundary”, Proc. Dolbeault Conference, 1994

[7] Diederich K. and Fornaess J. F., “Pseudoconvex domains: existence of Stein neighborhoods”, Duke Math. J., 44 (1977), 641–662 | DOI | MR | Zbl

[8] Federer H., Geometric Measure Theory, Springer, 1969 | MR | Zbl

[9] Gunning R. C. and Rossi H., Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, 1965 | MR | Zbl

[10] Harvey F. R. and Lawson H. B., “On boundaries of complex analytic varieties. I”, Ann. of Math. (2), 102 (1975), 223–290 | DOI | MR | Zbl

[11] Kytmanov A. M., “Golomorfnoe prodolzhenie integriruemykh CR-funktsii s chasti granitsy oblasti”, Matem. zametki, 48:2 (1990), 64–70 | MR

[12] Kytmanov A. M. and Rea C., Elimination of $L^1$ singularities of CR functions, Preprint, Univ. Roma 2, 1992

[13] Lupacciolu G., “A theorem on holomorphic extension of CR-functions”, Pacific J. Math., 124 (1986), 177–191 | MR | Zbl

[14] Rado T., “Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit”, Math. Z., 20 (1924), 1–6 | DOI | MR | Zbl

[15] Rosay J. P. and Stout E. L., “Radó's theorem for CR-functions”, Proc. Amer. Math. Soc., 106 (1989), 1017–1026 | DOI | MR | Zbl

[16] Rossi H., “The local maximum modulus principle”, Ann. of Math., 72 (1960), 1–11 | DOI | MR | Zbl

[17] Rothstein W., “Das Maximumprinzip und die Singularitäten analytischer Mengen”, Invent. Math., 6 (1968), 163–184 | DOI | MR | Zbl

[18] Scherbina N. V., “O polinomialnoi obolochke sfery, vlozhennoi v $\mathbb C^2$”, Matem. zametki, 49 (1991), 127–134 | MR | Zbl | Zbl

[19] Scherbina N. V., “O polinomialnoi obolochke dvumernoi sfery v $\mathbb C^2$”, DAN SSSR, 317 (1991), 1315–1319 | Zbl

[20] Scherbina N. V., “On the polynomial hull of a graph”, Indiana Univ. Math. J., 42 (1993), 477–503 | DOI | MR | Zbl

[21] Slodkowski Z., “Analytic set-valued functions and spectra”, Math. Ann., 256 (1981), 363–386 | DOI | MR | Zbl

[22] Stout E. L., “A generalization of a theorem of Radó”, Math. Ann., 177 (1968), 339–340 | DOI | MR | Zbl

[23] Trépreau J. M., “Sur le prolongement holomorphe des fonctions C-R définies sur une hypersurface réelle de classe $C^2$ dans $\mathbb C^n$”, Invent. Math., 83 (1986), 583–592 | DOI | MR | Zbl