Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 231-241

Voir la notice de l'article provenant de la source Math-Net.Ru

The Ulam model is studied in this paper: a small elastic ball moves vertically between two infinitely heavy horizontal walls, each of which moves in the vertical direction according to a periodic law. It is proved that the velocity of the ball is always bounded. The proof is based on a generalization of Moser's theorem on the existence of invariant curves under an area preserving mapping of an annulus.
@article{SM_1995_82_1_a11,
     author = {L. D. Pustyl'nikov},
     title = {Existence of invariant curves for maps close to degenerate maps, and a~solution of {the~Fermi--Ulam} problem},
     journal = {Sbornik. Mathematics},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 231
EP  - 241
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/
LA  - en
ID  - SM_1995_82_1_a11
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem
%J Sbornik. Mathematics
%D 1995
%P 231-241
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/
%G en
%F SM_1995_82_1_a11
L. D. Pustyl'nikov. Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 231-241. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/