Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 231-241
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Ulam model is studied in this paper: a small elastic ball moves vertically between two infinitely heavy horizontal walls, each of which moves in the vertical direction according to a periodic law. It is proved that the velocity of the ball is always bounded. The proof is based on a generalization of Moser's theorem on the existence of invariant curves under an area preserving mapping of an annulus.
			
            
            
            
          
        
      @article{SM_1995_82_1_a11,
     author = {L. D. Pustyl'nikov},
     title = {Existence of invariant curves for maps close to degenerate maps, and a~solution of {the~Fermi--Ulam} problem},
     journal = {Sbornik. Mathematics},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/}
}
                      
                      
                    TY - JOUR AU - L. D. Pustyl'nikov TI - Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem JO - Sbornik. Mathematics PY - 1995 SP - 231 EP - 241 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/ LA - en ID - SM_1995_82_1_a11 ER -
L. D. Pustyl'nikov. Existence of invariant curves for maps close to degenerate maps, and a~solution of the~Fermi--Ulam problem. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 231-241. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/
