Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 231-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Ulam model is studied in this paper: a small elastic ball moves vertically between two infinitely heavy horizontal walls, each of which moves in the vertical direction according to a periodic law. It is proved that the velocity of the ball is always bounded. The proof is based on a generalization of Moser's theorem on the existence of invariant curves under an area preserving mapping of an annulus.
@article{SM_1995_82_1_a11,
     author = {L. D. Pustyl'nikov},
     title = {Existence of invariant curves for maps close to degenerate maps, and a~solution of {the~Fermi{\textendash}Ulam} problem},
     journal = {Sbornik. Mathematics},
     pages = {231--241},
     year = {1995},
     volume = {82},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/}
}
TY  - JOUR
AU  - L. D. Pustyl'nikov
TI  - Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 231
EP  - 241
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/
LA  - en
ID  - SM_1995_82_1_a11
ER  - 
%0 Journal Article
%A L. D. Pustyl'nikov
%T Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem
%J Sbornik. Mathematics
%D 1995
%P 231-241
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/
%G en
%F SM_1995_82_1_a11
L. D. Pustyl'nikov. Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 231-241. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a11/

[1] Fermi E., “On the origin of the cosmic radiation”, Phys. Rev., 75:8 (1949), 1169–11744 | DOI

[2] Ulam S., “On some statistical properties of dynamical systems”, Proc. 4-th Berkeley Sympos. on Math. and Probabil., V. 3, Berkeley–Los Angeles, 1961, 315 | MR | Zbl

[3] Arnold V. I., “Malye znamenateli. III: Malye znamenateli i problemy ustoichivosti v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl

[4] Pustylnikov L. D., “Ob odnoi zadache Ulama”, TMF, 57:1 (1983), 128–132 | MR

[5] Mozer Yu., “Ob invariantnykh krivykh sokhranyayuschego ploschad otobrazheniya koltsa v sebya”, Matematika, 6:5 (1963), 51–67

[6] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[7] Pustylnikov L. D., “O modeli Fermi–Ulama”, DAN, 292:3 (1987), 549–553 | MR | Zbl

[8] Mozer Yu., “O razlozhenii uslovno-periodicheskikh dvizhenii v skhodyaschiesya stepennye ryady”, UMN, 24:2 (1969), 165–211 | MR

[9] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[10] Neishtadt A. I., “O razdelenii dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, PMM, 48:2 (1984), 197–204 | MR

[11] Pustylnikov L. D., “Novyi mekhanizm uskoreniya chastits i relyativistskii analog modeli Fermi–Ulama”, TMF, 77:1 (1988), 154–160 | MR

[12] Pustylnikov L. D., “Novyi mekhanizm uskoreniya chastits i chisla vrascheniya”, TMF, 82:2 (1990), 257–267 | MR

[13] Pustylnikov L. D., “O mekhanizme vozniknoveniya neobratimosti i neogranichennom roste energii v odnoi modeli statisticheskoi mekhaniki”, TMF, 86:1 (1991), 120–129 | MR | Zbl

[14] Poincare H., “Reflexions sur la theorie cinetique des gaz”, J. Phys. theoret. et. appl., 5:4 (1906), 369–403 | DOI | Zbl

[15] Puankare A., Izbrannye trudy, T. 3, Nauka, 1974, s. 385–412

[16] Bryuno A. D., Mnozhestva analitichnosti normalizuyuschego preobrazovaniya, Preprint No 97; Препринт No 98, ИПМ АН СССР, 1974; A. D. Bruno, Local Methods in Nonlinear Differential Equations, Springer-Verlag, Berlin etc. | MR