Gel'fand widths of certain classes of analytic functions
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 223-229

Voir la notice de l'article provenant de la source Math-Net.Ru

A formula, generalizing certain earlier known formulas of the same type, is obtained for the $n$th Gel'fand width of the imbedding operator $$ J\colon X^2(G)\to L_\infty(E), $$ where $G$ is a domain in $\mathbb{C}^m$ and $X^2(G)$ is some Hilbert space of analytic functions in $G$ with a reproducing kernel.
@article{SM_1995_82_1_a10,
     author = {O. G. Parfenov},
     title = {Gel'fand widths of certain classes of analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {223--229},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a10/}
}
TY  - JOUR
AU  - O. G. Parfenov
TI  - Gel'fand widths of certain classes of analytic functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 223
EP  - 229
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a10/
LA  - en
ID  - SM_1995_82_1_a10
ER  - 
%0 Journal Article
%A O. G. Parfenov
%T Gel'fand widths of certain classes of analytic functions
%J Sbornik. Mathematics
%D 1995
%P 223-229
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a10/
%G en
%F SM_1995_82_1_a10
O. G. Parfenov. Gel'fand widths of certain classes of analytic functions. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 223-229. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a10/