Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 21-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classification of integrable Hamiltonian systems with two degrees of freedom on three-dimensional constant energy surfaces is obtained up to homeomorphisms that preserve the trajectories.
@article{SM_1995_82_1_a1,
     author = {A. V. Bolsinov and A. T. Fomenko},
     title = {Orbital equivalence of integrable {Hamiltonian} systems with two degrees of freedom. {A~classification} {theorem.~II}},
     journal = {Sbornik. Mathematics},
     pages = {21--63},
     year = {1995},
     volume = {82},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a1/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. T. Fomenko
TI  - Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 21
EP  - 63
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a1/
LA  - en
ID  - SM_1995_82_1_a1
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. T. Fomenko
%T Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II
%J Sbornik. Mathematics
%D 1995
%P 21-63
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a1/
%G en
%F SM_1995_82_1_a1
A. V. Bolsinov; A. T. Fomenko. Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 21-63. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a1/

[1] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izvestiya AN SSSR. Seriya matem., 50:6 (1986), 1276–1307 | MR | Zbl

[2] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izvestiya AN SSSR. Seriya matem., 54:3 (1990), 546–575 | MR | Zbl

[3] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[4] Fomenko A. T., “Topological Classification of All Integrable Hamiltonian Differential Equations of General Type with Two Degrees of Freedom”, The Geometry of Hamiltonian Systems, Proc. of a Workshop (June 5–16, 1989), Springer-Verlag, 1991, 131–339 | MR

[5] A. T. Fomenko (ed.), Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, Amer. Math. Soc., 1991 | MR

[6] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Advances in Soviet Mathematics, 6, AMS, 147–183 | MR

[7] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[8] Nguen T. Z., “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4(274) (1990), 162–162

[9] Eliasson L. H., “Normal forms for Hamiltonian systems with Poisson commuting integrals”, Comm. Math. Helv., 65 (1990), 4–35 | DOI | MR | Zbl

[10] Oshemkov A. A., “Methods of calculation of the Fomenko–Zieschang invariant”, Topological Classification of Integrable Systems, eds. A. T. Fomenko, Amer. Math. Soc., 1991, 67–146 | MR

[11] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966, 568 pp. | MR | Zbl

[12] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy, II”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 151–242 | MR

[13] Leontovich E. A., Maier A. G., “O skheme, opredelyayuschei topologicheskuyu strukturu razbieniya na traektorii”, DAN SSSR, 103:4 (1955) | Zbl

[14] Umanskii Ya. L., “Skhema trekhmernoi dinamicheskoi sistemy Morsa–Smeila bez zamknutykh traektorii”, DAN SSSR, 230:6 (1976), 1286–1289 | MR | Zbl

[15] Peixoto M. M., “On the classification of flows of $2$-manifolds”, Dynamical Systems, Proc. Symp. Univ. of Bahia, Acad. Press, New York–London, 1973, 389–419 | MR

[16] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii, I”, Matem. sb., 185:4 (1994), 27–80 | MR | Zbl

[17] Nguyen Tien Zung, Contact 3-manifolds. Integrable Hamiltonian Systems, and Exotic Symplectic Structures in $R^4$, Preprint, International Centre for Theoretical Physics, Miramare-Trieste, August 1992