Convex domains with noncompact automorphism groups
Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 1-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Holomorphic vector fields tangent to the boundaries of homogeneous model domains are studied in this paper. The results obtained are applied to a classification of convex bounded domains of finite type with noncompact groups of holomorphic automorphisms.
@article{SM_1995_82_1_a0,
     author = {\`E. Bedford and S. I. Pinchuk},
     title = {Convex domains with noncompact automorphism groups},
     journal = {Sbornik. Mathematics},
     pages = {1--20},
     year = {1995},
     volume = {82},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_82_1_a0/}
}
TY  - JOUR
AU  - È. Bedford
AU  - S. I. Pinchuk
TI  - Convex domains with noncompact automorphism groups
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 1
EP  - 20
VL  - 82
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_82_1_a0/
LA  - en
ID  - SM_1995_82_1_a0
ER  - 
%0 Journal Article
%A È. Bedford
%A S. I. Pinchuk
%T Convex domains with noncompact automorphism groups
%J Sbornik. Mathematics
%D 1995
%P 1-20
%V 82
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_82_1_a0/
%G en
%F SM_1995_82_1_a0
È. Bedford; S. I. Pinchuk. Convex domains with noncompact automorphism groups. Sbornik. Mathematics, Tome 82 (1995) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/SM_1995_82_1_a0/

[1] Bedford E., Pinchuk S. I., “Oblasti v ${\mathbb C}^2$ s nekompaktnymi gruppami golomorfnykh avtomorfizmov”, Matem. sb., 135(177) (1988), 147–157 | MR | Zbl

[2] Bedford E., Pinchuk S., “Domains in ${\mathbb C}^{n+1}$ with noncompact automorphism group”, Jour. Geom. Anal., 1 (1991), 165–191 | MR | Zbl

[3] Boas H., Straube E., “On equality of line type and variety type of real hypersurfaces in ${\mathbb C}^n$”, Jour. Geom. Anal., 2 (1992), 117–131 | MR

[4] Frankel S., “Complex geometry of convex domains that cover varieties”, Acta Math., 163 (1989), 109–149 | DOI | MR | Zbl

[5] Frankel S., “Applications of affine geometry to geometric function theory in several comlex variables”, Proc. Symp. Pure Math., 52 (1991), 183–208 | MR | Zbl

[6] Graham I., “Sharp constants for the Koebe Theorem and the estimates of intrinsic metrics on convex domains”, Proc. Symp. Pure Math., 52 (1991), 233–238 | MR | Zbl

[7] Greene R., Krantz S., Caracterization of certain weakly pseudoconvex domains with noncompact automorphism groups, Lect. Notes in Math., 1268, 1987 | MR | Zbl

[8] Kim K.-T., “Complete localization of domains with noncompact automorphism groups”, Trans. AMS, 319 (1990), 130–153 | DOI | MR

[9] Kaup W., Upmeier H., “On the automorphisms of circular and Reinhardt domains in complex Banach spaces”, Manuscripta Math., 25 (1978), 97–133 | DOI | MR | Zbl

[10] Kodama A., “A characterization of certain domains with good boundary points in the sense of Greene–Krantz”, Tôhoku Math. J., 43 (1991), 9–25 | DOI | MR | Zbl

[11] McNeal J., Convex domains of finite type, Preprint | MR

[12] Sibony N., A class of hyperbolic manifolds, Ann. Math. Studies, 100, Princeton University Press, 1981 | MR | Zbl

[13] Wong B., “Characterization of the ball in ${\mathbb C}^n$ by its automorphism group”, Invent. Math., 41 (1977), 253–257 | DOI | MR | Zbl