On sets of nonexistence of radial limits of bounded analytic functions
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f(z)$ be a function defined in the unit disc $D$: $|z|<1$; $\Gamma$ the unit circle $|z|=1$; $E(f)$ the set of points of $\Gamma$ at which $f(z)$ has no radial limits. In the paper a complete characterization is given of the sets $E(f)$ for bounded analytic functions $f$ in $D$. It is proved that for any $G_{\delta\sigma}$ set $E\subset \Gamma$ of linear measure zero there exists a function $f(z)$, bounded and analytic in $D$, such that $E(f)=E$.
@article{SM_1995_81_2_a9,
author = {S. V. Kolesnikov},
title = {On sets of nonexistence of radial limits of bounded analytic functions},
journal = {Sbornik. Mathematics},
pages = {477--485},
year = {1995},
volume = {81},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/}
}
S. V. Kolesnikov. On sets of nonexistence of radial limits of bounded analytic functions. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/
[1] Fatou P., “Series trigonometriques et series de Taylor”, Acta Math., 30 (1906), 335–400 | DOI | MR | Zbl
[2] Luzin N. N., “Sur la representation conforme”, Izv. Ivanovo–Voznes. politekhn. in-ta, 2 (1919), 77–80 | Zbl
[3] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR
[4] Zagorskii Z. S., “O mnozhestve tochek nediferentsiruemosti nepreryvnoi funktsii”, Matem. sb., 9(51):3 (1941), 487–510 | MR | Zbl
[5] Lovater A. J., Piranian G., “The boundary behavior of functions analytic in a disk”, Ann. Acad. Sci. Fenn. Ser. A1, 1957, no. 239, 1–17 | MR
[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR