On sets of nonexistence of radial limits of bounded analytic functions
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f(z)$ be a function defined in the unit disc $D$: $|z|<1$; $\Gamma$ the unit circle $|z|=1$; $E(f)$ the set of points of $\Gamma$ at which $f(z)$ has no radial limits. In the paper a complete characterization is given of the sets $E(f)$ for bounded analytic functions $f$ in $D$. It is proved that for any $G_{\delta\sigma}$ set $E\subset \Gamma$ of linear measure zero there exists a function $f(z)$, bounded and analytic in $D$, such that $E(f)=E$.
@article{SM_1995_81_2_a9,
     author = {S. V. Kolesnikov},
     title = {On sets of nonexistence of radial limits of bounded analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {477--485},
     year = {1995},
     volume = {81},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/}
}
TY  - JOUR
AU  - S. V. Kolesnikov
TI  - On sets of nonexistence of radial limits of bounded analytic functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 477
EP  - 485
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/
LA  - en
ID  - SM_1995_81_2_a9
ER  - 
%0 Journal Article
%A S. V. Kolesnikov
%T On sets of nonexistence of radial limits of bounded analytic functions
%J Sbornik. Mathematics
%D 1995
%P 477-485
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/
%G en
%F SM_1995_81_2_a9
S. V. Kolesnikov. On sets of nonexistence of radial limits of bounded analytic functions. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/

[1] Fatou P., “Series trigonometriques et series de Taylor”, Acta Math., 30 (1906), 335–400 | DOI | MR | Zbl

[2] Luzin N. N., “Sur la representation conforme”, Izv. Ivanovo–Voznes. politekhn. in-ta, 2 (1919), 77–80 | Zbl

[3] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[4] Zagorskii Z. S., “O mnozhestve tochek nediferentsiruemosti nepreryvnoi funktsii”, Matem. sb., 9(51):3 (1941), 487–510 | MR | Zbl

[5] Lovater A. J., Piranian G., “The boundary behavior of functions analytic in a disk”, Ann. Acad. Sci. Fenn. Ser. A1, 1957, no. 239, 1–17 | MR

[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR