On sets of nonexistence of radial limits of bounded analytic functions
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(z)$ be a function defined in the unit disc $D$: $|z|1$; $\Gamma$ the unit circle $|z|=1$; $E(f)$ the set of points of $\Gamma$ at which $f(z)$ has no radial limits. In the paper a complete characterization is given of the sets $E(f)$ for bounded analytic functions $f$ in $D$. It is proved that for any $G_{\delta\sigma}$ set $E\subset \Gamma$ of linear measure zero there exists a function $f(z)$, bounded and analytic in $D$, such that $E(f)=E$.
@article{SM_1995_81_2_a9,
author = {S. V. Kolesnikov},
title = {On sets of nonexistence of radial limits of bounded analytic functions},
journal = {Sbornik. Mathematics},
pages = {477--485},
publisher = {mathdoc},
volume = {81},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/}
}
S. V. Kolesnikov. On sets of nonexistence of radial limits of bounded analytic functions. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/