On sets of nonexistence of radial limits of bounded analytic functions
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be a function defined in the unit disc $D$: $|z|1$; $\Gamma$ the unit circle $|z|=1$; $E(f)$ the set of points of $\Gamma$ at which $f(z)$ has no radial limits. In the paper a complete characterization is given of the sets $E(f)$ for bounded analytic functions $f$ in $D$. It is proved that for any $G_{\delta\sigma}$ set $E\subset \Gamma$ of linear measure zero there exists a function $f(z)$, bounded and analytic in $D$, such that $E(f)=E$.
@article{SM_1995_81_2_a9,
     author = {S. V. Kolesnikov},
     title = {On sets of nonexistence of radial limits of bounded analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {477--485},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/}
}
TY  - JOUR
AU  - S. V. Kolesnikov
TI  - On sets of nonexistence of radial limits of bounded analytic functions
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 477
EP  - 485
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/
LA  - en
ID  - SM_1995_81_2_a9
ER  - 
%0 Journal Article
%A S. V. Kolesnikov
%T On sets of nonexistence of radial limits of bounded analytic functions
%J Sbornik. Mathematics
%D 1995
%P 477-485
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/
%G en
%F SM_1995_81_2_a9
S. V. Kolesnikov. On sets of nonexistence of radial limits of bounded analytic functions. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 477-485. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a9/