Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A~classification theorem.~I
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 421-465
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A classification of the integrable Hamiltonian systems with two degrees of freedom on three-dimensional constant energy surfaces is obtained up to homeomorphisms that preserve the trajectories.
			
            
            
            
          
        
      @article{SM_1995_81_2_a7,
     author = {A. V. Bolsinov and A. T. Fomenko},
     title = {Orbital equivalence of integrable {Hamiltonian} systems with two degrees of freedom. {A~classification} {theorem.~I}},
     journal = {Sbornik. Mathematics},
     pages = {421--465},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a7/}
}
                      
                      
                    TY - JOUR AU - A. V. Bolsinov AU - A. T. Fomenko TI - Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A~classification theorem.~I JO - Sbornik. Mathematics PY - 1995 SP - 421 EP - 465 VL - 81 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a7/ LA - en ID - SM_1995_81_2_a7 ER -
%0 Journal Article %A A. V. Bolsinov %A A. T. Fomenko %T Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A~classification theorem.~I %J Sbornik. Mathematics %D 1995 %P 421-465 %V 81 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a7/ %G en %F SM_1995_81_2_a7
A. V. Bolsinov; A. T. Fomenko. Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A~classification theorem.~I. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 421-465. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a7/
