Stable vector bundles on projective surfaces
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 397-419

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective variant of an arithmetic criterion for instability of vector bundles on a surface is considered. Namely, a lower bound is established for the degree of a destabilizing subsheaf in a vector bundle with positive discriminant. This bound, which depends on the rank and discriminant of the bundle, is used to prove that the restrictions of stable bundles on a surface to curves are stable, and to prove a number of other results.
@article{SM_1995_81_2_a6,
     author = {F. A. Bogomolov},
     title = {Stable vector bundles on projective surfaces},
     journal = {Sbornik. Mathematics},
     pages = {397--419},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a6/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - Stable vector bundles on projective surfaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 397
EP  - 419
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a6/
LA  - en
ID  - SM_1995_81_2_a6
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T Stable vector bundles on projective surfaces
%J Sbornik. Mathematics
%D 1995
%P 397-419
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a6/
%G en
%F SM_1995_81_2_a6
F. A. Bogomolov. Stable vector bundles on projective surfaces. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 397-419. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a6/