Transfer of an extension of the algebra of pseudodifferential operators, and some nonlocal elliptic problems
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 363-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finiteness theorems (the Fredholm property) are proved in this paper for a certain class of elliptic problems. The operators corresponding to these problems are obtained as the elements of an extension of the set of pseudodifferential operators via a special class of (nonlocal) operators.
@article{SM_1995_81_2_a5,
     author = {B. Yu. Sternin and V. E. Shatalov},
     title = {Transfer of an extension of the~algebra of pseudodifferential operators, and some nonlocal elliptic problems},
     journal = {Sbornik. Mathematics},
     pages = {363--396},
     year = {1995},
     volume = {81},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a5/}
}
TY  - JOUR
AU  - B. Yu. Sternin
AU  - V. E. Shatalov
TI  - Transfer of an extension of the algebra of pseudodifferential operators, and some nonlocal elliptic problems
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 363
EP  - 396
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a5/
LA  - en
ID  - SM_1995_81_2_a5
ER  - 
%0 Journal Article
%A B. Yu. Sternin
%A V. E. Shatalov
%T Transfer of an extension of the algebra of pseudodifferential operators, and some nonlocal elliptic problems
%J Sbornik. Mathematics
%D 1995
%P 363-396
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a5/
%G en
%F SM_1995_81_2_a5
B. Yu. Sternin; V. E. Shatalov. Transfer of an extension of the algebra of pseudodifferential operators, and some nonlocal elliptic problems. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 363-396. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a5/

[1] Bitsadze A. V., Samarskii A. A., “Ob odnom obobschenii lineinykh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | MR | Zbl

[2] McKrall A., “The adjoint of differential operator with integral boundary conditions”, Proc. AMS, 117 (1965), 352–361 | MR

[3] Roitberg Ya. A., Sheftel Z. G., “Ob odnom obschem klasse nelokalnykh ellipticheskikh zadach”, DAN SSSR, 192:3 (1970), 511–513 | MR | Zbl

[4] Roitberg Ya. A., Sheftel Z. G., “Nelokalnye zadachi dlya ellipticheskikh uravnenii i sistem”, Sib. matem. zhurnal, 13:1 (1972), 165–181 | MR | Zbl

[5] Sternin B. Yu., “Ellipticheskie (ko)granichnye morfizmy”, DAN SSSR, 172:1 (1967), 44–47 | MR | Zbl

[6] Sternin B. Yu., “Otnositelnaya ellipticheskaya teoriya i problema Soboleva”, DAN SSSR, 230:2 (1976), 287–290 | MR | Zbl

[7] Sternin B. Yu., Shatalov V. E., “Integralnye operatory Fure–Maslova, assotsiirovannye s rassloeniem, i odno rasshirenie algebry psevdodifferentsialnykh operatorov”, DAN SSSR, 323:1 (1992), 25–29 | MR

[8] Sternin B. Yu., Shatalov V. E., “Ob odnom klasse nelokalnykh ellipticheskikh zadach”, DAN, 323:2 (1992), 245–249 | MR | Zbl

[9] Hörmander L., The Analysis of Linear Partial Differential Operators, V. IV, Springer–Verlag, Berlin–Heidelberg – New-York–Tokyo, 1985 | MR