Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 343-361

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of the theory of interpolation of Banach spaces are applied to the study of the following questions: Riesz completeness for linear pencils; selection of maximal semidefinite invariant subspaces for a given operator defined in a Krein space; boundedness of the Riesz projections corresponding to the unbounded component of the spectrum of a positive operator.
@article{SM_1995_81_2_a4,
     author = {S. G. Pyatkov},
     title = {Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils},
     journal = {Sbornik. Mathematics},
     pages = {343--361},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a4/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 343
EP  - 361
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a4/
LA  - en
ID  - SM_1995_81_2_a4
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils
%J Sbornik. Mathematics
%D 1995
%P 343-361
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a4/
%G en
%F SM_1995_81_2_a4
S. G. Pyatkov. Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 343-361. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a4/