Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 343-361
Voir la notice de l'article provenant de la source Math-Net.Ru
Methods of the theory of interpolation of Banach spaces are applied to the study of the following questions: Riesz completeness for linear pencils; selection of maximal semidefinite invariant subspaces for a given operator defined in a Krein space; boundedness of the Riesz projections corresponding to the unbounded component of the spectrum of a positive operator.
@article{SM_1995_81_2_a4,
author = {S. G. Pyatkov},
title = {Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils},
journal = {Sbornik. Mathematics},
pages = {343--361},
publisher = {mathdoc},
volume = {81},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a4/}
}
S. G. Pyatkov. Riesz completeness of the~eigenelements and associated elements of linear selfadjoint pencils. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 343-361. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a4/