The space of almost periodic functions with the Hausdorff metric
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 321-341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The function space $\mathbf{H}$ obtained as the completion of the space $\mathbf{B}$ of real-valued uniformly almost periodic functions (a.p.) (Bohr a.p. functions) with respect to the Hausdorff metric is considered. Elements of the space $\mathbf{H}$ are called $H$-a.p. functions. Analogs of the theorems of Lyusternik (a criterion for compactness of a function family), Bochner (a criterion for almost periodicity), and Bohr (on representation of a.p. functions as diagonals of limit periodic functions) are obtained. The relationship between the space $\mathbf{H}$ and the space of $N$-a.p. functions is studied. In particular, it is shown that a continuous function in $\mathbf{H}$ may not belong to $\mathbf{B}$, but it is always an $N$-a.p. function. At the same time, the sum and the product of two continuous $H$-a.p. functions are not, in general, in $\mathbf{H}$ (but they are $N$-a.p. functions). Due to the coincidence of the topologies on $\mathbf{B}$ generated by the uniform and the Hausdorff metrics, the indicated space, in spite of its nonlinearity, is closer to the space $\mathbf{B}$ than the corresponding completions of $\mathbf{B}$ with respect to integral metrics.
@article{SM_1995_81_2_a3,
     author = {A. P. Petukhov},
     title = {The space of almost periodic functions with {the~Hausdorff} metric},
     journal = {Sbornik. Mathematics},
     pages = {321--341},
     year = {1995},
     volume = {81},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a3/}
}
TY  - JOUR
AU  - A. P. Petukhov
TI  - The space of almost periodic functions with the Hausdorff metric
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 321
EP  - 341
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a3/
LA  - en
ID  - SM_1995_81_2_a3
ER  - 
%0 Journal Article
%A A. P. Petukhov
%T The space of almost periodic functions with the Hausdorff metric
%J Sbornik. Mathematics
%D 1995
%P 321-341
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a3/
%G en
%F SM_1995_81_2_a3
A. P. Petukhov. The space of almost periodic functions with the Hausdorff metric. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 321-341. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a3/

[1] Bor G., Pochti-periodicheskie funktsii, GTTI, M.–L., 1934

[2] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953

[3] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[4] Stepanov V., “Ueber einige Verallgemeinerungen der fastperiodischen Funktionen”, Math. Ann., 95 (1926), 437–498

[5] Weyl H., “Integralgleichungen und fastperiodischen Funktionen”, Math. Ann., 97 (1926), 338–356 | DOI | MR | Zbl

[6] Besicovitch A., “On generalised almost periodic functions”, Proc. London Math. Soc. (2), 25 (1926), 495–512 | DOI | Zbl

[7] Besicovitch A., “On Parseval theorem for Dirichlet Series”, Proc. London Math. Soc. (2), 26 (1926), 25–34 | DOI | Zbl

[8] Besicovitch A., Almost periodic functions, Cambridge, 1932

[9] Wiener N., “Generalised harmonic analysis”, Acta math., 55 (1930), 117–258 | DOI | MR | Zbl

[10] Bochner S., “Beitrage zur Theorie der fastperiodischen Functionen”, Math. Ann., 96 (1927), 119–147 ; 338–409 | DOI | MR

[11] Bogolyubov N. N., “O nekotorykh arifmeticheskikh svoistvakh pochti-periodov”, Zap. kafedri matematichnoï fiziki Institutu budivelnoïmekhaniki Akademiï nauk URSR, T. IV, 1939

[12] Lyusternik L. A., “Osnovnye ponyatiya funktsionalnogo analiza”, UMN, 1 (1936), 77–140

[13] Sendov Bl., Khausdorfovye priblizheniya, Sofiya, 1979 | MR