On uniform stabilization of solutions of the exterior problem for the Navier–Stokes equations
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 297-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first mixed problem with homogeneous boundary conditions for the system of Stokes and Navier–Stokes equations is considered in a cylinder $D=(0,\infty)\times\Omega$, where $\Omega$ is the complement of the closure of a bounded domain in $R^3$. For solutions of both problems uniform decay with rate $t^{-3/2}$ is proved under certain smoothness conditions on the boundary under the assumption that the initial vector belongs to $\mathbf{L}_2$. Here in the case of the nonlinear problem it is additionally assumed that a weak solution satisfies the strong energy inequality. A result on the decay of a solution of the linearized system of Navier–Stokes equations is used in the proof of the main assertion on stabilization of a solution of the problem with a bounded initial vector-valued function: existence of a uniform zero spherical limit mean of the initial function is necessary and sufficient for uniform stabilization of the solution to zero.
@article{SM_1995_81_2_a2,
     author = {F. Kh. Mukminov},
     title = {On uniform stabilization of solutions of the~exterior problem for {the~Navier{\textendash}Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {297--320},
     year = {1995},
     volume = {81},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a2/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - On uniform stabilization of solutions of the exterior problem for the Navier–Stokes equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 297
EP  - 320
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a2/
LA  - en
ID  - SM_1995_81_2_a2
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T On uniform stabilization of solutions of the exterior problem for the Navier–Stokes equations
%J Sbornik. Mathematics
%D 1995
%P 297-320
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a2/
%G en
%F SM_1995_81_2_a2
F. Kh. Mukminov. On uniform stabilization of solutions of the exterior problem for the Navier–Stokes equations. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 297-320. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a2/

[1] Beirao da Veiga H., “Existance and asymptotic behaviour for strong solutions of the Navier-Stokes equations in whole space”, Indiana Univ. Math. J., 36 (1987), 149–166 | DOI | MR | Zbl

[2] Bogovskii M. E., “Reshenie nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\operatorname {div}$ i $\operatorname {grad}$”, Trudy seminara S. L. Soboleva, no. 1, Nauka, Novosibirsk, 1980, 5–40 | MR

[3] Borchers S., Miyakawa T., “$L$-decay for the Navier–Stokes flow in half spaces”, Math. Annalen, 282 (1988), 139–155 | DOI | MR | Zbl

[4] Borchers S., Miyakawa T., “Algebraic $L$-decay for Navier–Stokes flows in exterior domeins”, Acta Math., 165 (1990), 189–227 | DOI | MR | Zbl

[5] Borchers W., Sohr H., “The equations $\operatorname {div}u=f$ and $\operatorname {rot}v=g$ with homogeneous Dirichlet boundary condition”, Hokkaido Math. J., 19 (1990), 67–87 | MR | Zbl

[6] Maslennikova V. N., Glushko A. V., “Teoremy o lokalizatsii tauberovskogo tipa i skorost zatukhaniya resheniya sistemy gidrodinamiki vyazkoi szhimaemoi zhidkosti”, Tr. MIAN, 181, Nauka, M., 1988, 156–186 | MR | Zbl

[7] Guschin A. K., “Nekotorye svoistva obobschennogo resheniya vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 97 (139) (1975), 242–261 | MR | Zbl

[8] Guschin A. K., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 119 (1982), 451–508 | MR

[9] Guschin A. K., Mikhailov V. P., Mikhailov Yu. A., “O ravnomernoi stabilizatsii resheniya vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 128 (1985), 147–168 | MR | Zbl

[10] Denisov V. N., “O stabilizatsii resheniya zadachi Koshi dlya uravneniya teploprovodnosti”, Differents. uravneniya, 24 (1988), 288–299 | MR | Zbl

[11] Drozhzhinov Yu. N., “Stabilizatsiya resheniya obobschennoi zadachi Koshi dlya ultraparabolicheskogo uravneniya”, Izv. AN SSSR. Ser. matem., 33 (1969), 368–379

[12] Fujita H., Kato T., “On the Navier–Stokes initial value problem”, Arch. Rat. Mech. Anal., 16 (1964), 269–315 | DOI | MR | Zbl

[13] Galdi G., Maremonti P., “Monotonic decreasing and asymptotic behaviour of the kinetic energy for weak solutions of the Navier–Stokes equations in exterior domains”, Arch. Rational Mech. Anal., 94 (1986), 253–266 | DOI | MR | Zbl

[14] Zhikov V. V., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 104(146) (1977), 597–616 | MR | Zbl

[15] Hopf E., “Uber die Aufangswertaufgabe fur die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | MR | Zbl

[16] Heywood J. G., “On uniqueness questions in the theory of viscous flow”, Acta Math., 138 (1976), 61–102 | DOI | MR

[17] Heywood J. G., “The Navier–Stokes equations: On the existance, regularity and decay of solutions”, Indiana Univ. Math. J., 29 (1980), 639–681 | DOI | MR | Zbl

[18] Kajikiya R., Miyakawa T., “On $L$ decay of weak solutions of the Navier–Stokes equations in $R$”, Math. Z., 192 (1986), 135–148 | DOI | MR | Zbl

[19] Kato T., “Strong $L$-solutions of the Navier–Stokes equations in $R$, with applications to weak solutions”, Math. Z., 187 (1984), 471–480 | DOI | MR | Zbl

[20] Kamin S., “On stabilization of solutions of the Cauchy problem for parabolic equations”, Proc. Roy. Soc. Edinburgh, Sect. A, 76 (1976), 43–53 | MR | Zbl

[21] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[22] Ladyzhenskaya O. A, Solonnikov V. A., “O nachalno-kraevoi zadache dlya linearizovannoi sistemy uravnenii Nave–Stoksa v oblastyakh s nekompaktnymi granitsami”, Tr. MIAN, 159, Nauka, M., 1983, 37–40 | MR | Zbl

[23] Ladyzhenskaya O. A, Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zapiski nauch. sem. LOMI, 59, Nauka, L., 1976, 81–116 | MR | Zbl

[24] Leray J., “Sur le movement d'un liquids visqueux emplissant l'espase”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[25] Maremonty P., “On the asymptotic behaviour of the $L$ norm of suitable weak solutions to the Navier–Stokes equations in three-dimensional exterior domains”, Comm. Math. Phys., 118 (1988), 385–400 | DOI | MR

[26] Maremonti P., Solonnikov V. A., “Ob otsenke reshenii sistemy Stoksa vo vneshnikh oblastyakh”, Zapiski nauch. sem. LOMI, 180, Nauka, L., 1990, 105–120 | MR

[27] Masuda K., “On the stability of incompressibble viscous fluid motions past objects”, J. Math. Soc. Japan, 27 (1975), 294–327 | DOI | MR | Zbl

[28] Masuda K., “Weak solutions of the Navier–Stokes equations”, Tohoku Math. J., 37 (1984), 623–646 | DOI | MR

[29] Maslennikova V. N., “O skorosti zatukhaniya vikhrya v vyazkoi zhidkosti”, Tr. MIAN, 126, Nauka, M., 1973, 46–72 | MR | Zbl

[30] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[31] Miyakawa T., Sohr H., “On energy inequality, smoothness and large time behaviour in $L$ for weak solutions of the Navier–Stokes equations in exterior domains”, Math. Z., 199 (1988), 455–478 | DOI | MR | Zbl

[32] Mukminov F. Kh., “O ravnomernoi stabilizatsii reshenii pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Matem. sb., 181 (1990), 1486–1509 | MR

[33] Mukminov F. Kh., “Ob ubyvanii resheniya pervoi smeshannoi zadachi dlya linearizovannoi sistemy uravnenii Nave–Stoksa v oblasti s nekompaktnoi granitsei”, Matem. sb., 183 (1992), 123–144 | Zbl

[34] Mukminov F. Kh., “Ob ubyvanii resheniya smeshannoi zadachi dlya linearizovannoi sistemy uravnenii Nave–Stoksa”, Differents. uravneniya, 28 (1992), 2410–2418 | MR

[35] Mukminov F. Kh., “O skorosti ubyvaniya resheniya smeshannoi zadachi dlya sistemy uravnenii Nave–Stoksa v oblasti s nekompaktnoi granitsei”, Matem. sb., 184 (1993), 139–160 | Zbl

[36] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–953 | DOI | MR

[37] Porper F. O., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskogo uravneniya s peremennymi koeffitsientami”, DAN SSSR, 153 (1963), 273–275 | MR | Zbl

[38] Repnikov V. D., “O ravnomernoi stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, DAN SSSR, 157 (1964), 532–535 | MR | Zbl

[39] Schonbek M. E., “Large time behavior of solutions to the Navier–Stokes equations”, Comm. Partial Differential Equations, 11 (1986), 733–763 | DOI | MR | Zbl

[40] Solonnikov V. A., “Otsenki reshenii nestatsionarnoi sistemy Nave–Stoksa”, Zapiski nauch. sem. LOMI, 38, Nauka, L., 1973, 153–231 | MR | Zbl

[41] Tacklind S., “Sur les classes quasianalytiques des solutions des equations aux derivees partielles du type parabolique”, Nova Acta Reg. Soc. Sci. Upsaliensis. Ser. 4, 10:3 (1936)

[42] Temam R., Uravneniya Nave–Stoksa: Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[43] Wiegner M., “Decay results for weak solutions of the Navier–Stokes equations”, J. London Math. Soc., 35 (1987), 303–313 | DOI | MR | Zbl

[44] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl