On rapidly converging iterative methods with incomplete splitting of boundary conditions for a multidimensional singularly perturbed system of Stokes type
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 487-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constructed and investigated are iterative methods for solving the Dirichlet problem for a system with small parameter $\varepsilon >0$: $$ -\varepsilon^2\Delta\mathbf{u}+\mathbf{u}+\operatorname{grad}p=\mathbf{f},\qquad \operatorname{div}\mathbf{u}=0, $$ leading at each iteration to splitting into a Neumann problem for the pressure and a vector Dirichlet–Neumann problem for the velocities. The case of periodic 'flows' between parallel walls is studied. The fastest variants of the method have the rate of convergence of a geometric progression with ratio of order $\varepsilon$. Also obtained are '$\varepsilon$-coercive' estimates of the solutions of the original problem in Sobolev norms.
@article{SM_1995_81_2_a10,
     author = {B. V. Pal'tsev},
     title = {On rapidly converging iterative methods with incomplete splitting of boundary conditions for a~multidimensional singularly perturbed system of {Stokes} type},
     journal = {Sbornik. Mathematics},
     pages = {487--531},
     year = {1995},
     volume = {81},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a10/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - On rapidly converging iterative methods with incomplete splitting of boundary conditions for a multidimensional singularly perturbed system of Stokes type
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 487
EP  - 531
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a10/
LA  - en
ID  - SM_1995_81_2_a10
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T On rapidly converging iterative methods with incomplete splitting of boundary conditions for a multidimensional singularly perturbed system of Stokes type
%J Sbornik. Mathematics
%D 1995
%P 487-531
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a10/
%G en
%F SM_1995_81_2_a10
B. V. Pal'tsev. On rapidly converging iterative methods with incomplete splitting of boundary conditions for a multidimensional singularly perturbed system of Stokes type. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 487-531. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a10/

[1] Dorodnitsyn A. A., “Ob odnom metode resheniya zadachi obtekaniya tel vyazkoi zhidkostyu”, Fluid Dynamics Transactions, V. 3, PWN, Warszwa, 1967, 41–52

[2] Dorodnitsyn A. A., Meller N. A., “O nekotorykh podkhodakh k resheniyu statsionarnykh uravnenii Nave–Stoksa”, ZhVM i MF, 8:2 (1968), 393–402 | MR

[3] Dorodnitsyn A. A., Meller N. A., “Primenenie malogo parametra k resheniyu uravnenii Nave–Stoksa”, Tr. II Respubl. konf. po aerogidromekhan., teploobmenu i massoobmenu, Sekts. Aerodinamika bolshikh skorostei (26 maya – 1 iyunya 1970 g.), Izd-vo Kievsk. un-ta, Kiev, 1971, 5–20

[4] Paltsev B. V., “O razlozhenii reshenii zadachi Dirikhle i smeshannoi zadachi dlya bigarmonicheskogo uravneniya v ryad po resheniyam raspadayuschikhsya zadach”, ZhVM i MF, 6:1 (1966), 43–51 | MR

[5] Paltsev B. V., “Metod malogo parametra v granichnoi zadache dlya sistemy Ozeena”, ZhVM i MF, 7:5 (1967), 1144–1166 | MR | Zbl

[6] Paltsev B. V., “O skhodimosti metoda posledovatelnykh priblizhenii s rasschepleniem granichnykh uslovii pri reshenii kraevoi zadachi dlya uravnenii Nave–Stoksa”, ZhVM i MF, 10:3 (1970), 785–788 | MR | Zbl

[7] Dorodnicyn A. A., “On an approach to the solution of threedimensional problems of viscous incompressible flow around bodies”, Tr. Sov.–Yaponsk. simp. po vychisl. aerogidrodinamike, T. 2, VTs AN SSSR, M., 1989, 83–90

[8] Meller N. A. Paltsev B. V., Chechel I. I., “O bystroskhodyaschikhsya modifikatsiyakh metoda A.A.Dorodnitsyna dlya dvumernoi sistemy tipa Stoksa s malym parametrom”, Probl. prikl. matem. i informatiki. Ch. I. Mekhanika i matematicheskaya fizika, VTs AN SSSR, M., 1992, 108–124 | MR

[9] Abramov A. A., Ulyanova V. I., “Ob odnom metode resheniya uravneniya tipa bigarmonicheskogo s singulyarno vkhodyaschim parametrom”, ZhVM i MF, 32:4 (1992), 567–575 | MR | Zbl

[10] Glowinski R., “Splitting methods for the numerical solutions of the incompressible Navier–Stokes equations”, Vistas Appl. Math. G. I. Marchuk Occas. 60-th Birthday, N.-Y., 1986, 57–96 | MR

[11] Bristeau M., Glowinski R., Periaux J., “Acceleration procedures for numerical simulation of compressible and incompressible viscous flows”, Advances in Computational Nonlinear Mechanics, ed. I. S. Doltsinis, Springer-Verlag, Wien, 1989, 197–243 | MR

[12] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s rasschepleniem granichnykh uslovii dlya mnogomernoi sistemy tipa Stoksa. Periodicheskie “techeniya” mezhdu parallelnymi stenkami”, Dokl. RAN, 325:5 (1992), 926–931 | Zbl

[13] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[14] Slobodetskii L. N., “Obobschennye prostranstva S. L. Soboleva i ikh prilozheniya k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uchen. zap. Leningr. Gos. ped. in-ta, 197 (1958), 54–112 | MR

[15] Volevich L. R., Paneyakh B. P., “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, UMN, 20:1 (1965), 3–74 | MR | Zbl

[16] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[17] Roitberg Ya. A., Serdyuk V. A., “Teoriya razreshimosti v obobschennykh funktsiyakh ellipticheskikh zadach s parametrom dlya obschikh sistem uravnenii”, Tr. MMO, 53, URSS, M., 1990, 229–258 | MR

[18] Bogovskii M. E., “Reshenie nekotorykh zadach vektornogo analiza, svyazannykh s operatorami $\operatorname {div}$ i $\operatorname {grad}$”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k kraevym zadacham matematicheskoi fiziki, Tr. seminara S. L. Soboleva, 1, 1980, 5–40 | MR | Zbl

[19] Yudovich V. I., Matematicheskie voprosy ustoichivosti techenii zhidkosti, Diss. ...doktora fiz.-mat. nauk, Rostov-na-Donu, 1972