Transfer of Sommerfeld's radiation conditions to an~artificial boundary of a~domain, based on a~variational principle
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 261-279

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve the Helmholtz equation interior to a bounded domain with artificial boundary, a new formulation of variational type is proposed for boundary conditions which have the property of suppressing waves reflected from the boundary. This formulation is based on the minimization of a functional constructed in a special way. Existence and uniqueness theorems are proved for a classical solution of the problem in the proposed variational formulation. It is proved that the solution of the interior problem converges uniformly to a solution of the problem posed in an unbounded domain with Sommerfeld's radiation conditions at infinity as the size of the domain increases without limit.
@article{SM_1995_81_2_a0,
     author = {I. V. Bezmenov},
     title = {Transfer of {Sommerfeld's} radiation conditions to an~artificial boundary of a~domain, based on a~variational principle},
     journal = {Sbornik. Mathematics},
     pages = {261--279},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/}
}
TY  - JOUR
AU  - I. V. Bezmenov
TI  - Transfer of Sommerfeld's radiation conditions to an~artificial boundary of a~domain, based on a~variational principle
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 261
EP  - 279
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/
LA  - en
ID  - SM_1995_81_2_a0
ER  - 
%0 Journal Article
%A I. V. Bezmenov
%T Transfer of Sommerfeld's radiation conditions to an~artificial boundary of a~domain, based on a~variational principle
%J Sbornik. Mathematics
%D 1995
%P 261-279
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/
%G en
%F SM_1995_81_2_a0
I. V. Bezmenov. Transfer of Sommerfeld's radiation conditions to an~artificial boundary of a~domain, based on a~variational principle. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 261-279. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/