Transfer of Sommerfeld's radiation conditions to an artificial boundary of a domain, based on a variational principle
Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 261-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To solve the Helmholtz equation interior to a bounded domain with artificial boundary, a new formulation of variational type is proposed for boundary conditions which have the property of suppressing waves reflected from the boundary. This formulation is based on the minimization of a functional constructed in a special way. Existence and uniqueness theorems are proved for a classical solution of the problem in the proposed variational formulation. It is proved that the solution of the interior problem converges uniformly to a solution of the problem posed in an unbounded domain with Sommerfeld's radiation conditions at infinity as the size of the domain increases without limit.
@article{SM_1995_81_2_a0,
     author = {I. V. Bezmenov},
     title = {Transfer of {Sommerfeld's} radiation conditions to an~artificial boundary of a~domain, based on a~variational principle},
     journal = {Sbornik. Mathematics},
     pages = {261--279},
     year = {1995},
     volume = {81},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/}
}
TY  - JOUR
AU  - I. V. Bezmenov
TI  - Transfer of Sommerfeld's radiation conditions to an artificial boundary of a domain, based on a variational principle
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 261
EP  - 279
VL  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/
LA  - en
ID  - SM_1995_81_2_a0
ER  - 
%0 Journal Article
%A I. V. Bezmenov
%T Transfer of Sommerfeld's radiation conditions to an artificial boundary of a domain, based on a variational principle
%J Sbornik. Mathematics
%D 1995
%P 261-279
%V 81
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/
%G en
%F SM_1995_81_2_a0
I. V. Bezmenov. Transfer of Sommerfeld's radiation conditions to an artificial boundary of a domain, based on a variational principle. Sbornik. Mathematics, Tome 81 (1995) no. 2, pp. 261-279. http://geodesic.mathdoc.fr/item/SM_1995_81_2_a0/

[1] Sommerfeld A., Lectures on Theoretical Physics, Academic Press, New York, 1964

[2] Vladimirov V. S., “Priblizhennoe reshenie odnoi kraevoi zadachi dlya differentsialnogo uravneniya vtorogo poryadka”, Prikl. matem. i mekhan., 19:3 (1955), 315–324 | MR | Zbl

[3] Fedoryuk M. V., “Uravnenie Gelmgoltsa v volnovode (otgonka kraevogo usloviya ot beskonechnosti)”, Zhurn. vychisl. matem. i matem. fiz., 12:2 (1972), 374–387 | MR

[4] Konstantinov A. A., Maslov V. P., Chebotarev A. M., “Snos kraevykh uslovii dlya uravnenii s chastnymi proizvodnymi”, Zhurn. vychisl. matem. i matem. fiz., 28:12 (1988), 1763–1778 | MR | Zbl

[5] Enguist B., Majda A., “Radiation Boundary Conditions for Acoustic and Elastic Wave Calculations”, Comm. Pure Appl. Math., 32 (1979), 313–357 | DOI | MR

[6] Ryabenkii V. S., “Tochnyi perenos raznostnykh kraevykh uslovii”, Funkts. analiz i ego prilozh., 24:3 (1990), 90–91 | MR | Zbl

[7] Sofronov I. L., “Metod raznostnykh potentsialov dlya zadach difraktsii, opisyvaemykh uravneniyami Maksvella”, Vychisl. mekhanika deformir. tverdogo tela, no. 2, M., 1990, 158–177

[8] Givoli D., “Review Artical. Non-reflecting Boundary Conditions”, J. Comp.Phys., 94 (1991), 1–29 | DOI | MR | Zbl

[9] Bezmenov I. V., Primenenie variatsionnogo printsipa pri postanovke granichnykh uslovii v zadachakh volnovoi dinamiki. II: Chislennaya realizatsiya, Prepr. No 72, IPM im. M. V. Keldysha RAN, 1992, 28 pp.

[10] Bezmenov I. V., Rusanov V. V., Silakov V. P., Prostranstvenno-vremennaya struktura neravnovesnogo razryada, sozdavaemogo polem dvukh peresekayuschikhsya puchkov SVCh-voln, Prepr. No 129, IPM im. M. V. Keldysha AN SSSR, 1991, 129 pp.

[11] Bezmenov I. V., Rusanov V. V., Silakov V. P., Vliyanie kineticheskikh protsessov na dinamiku volnovogo razryada v azote, Prepr. No 30, IPM im. M. V. Keldysha RAN, 1992, 28 pp.

[12] Bezmenov I. V., Primenenie variatsionnogo printsipa pri postanovke granichnykh uslovii v zadachakh volnovoi dinamiki. I: Teoreticheskii analiz, Prepr. No 40, IPM im. M. V. Keldysha RAN, 1992, 32 pp.

[13] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967, 436 pp. | MR

[14] Vekua I. N., “O metagarmonicheskikh funktsiyakh”, Tr. Tbilisskogo Matem. in-ta, 12 (1943), 105–174 | MR | Zbl