@article{SM_1995_81_1_a9,
author = {Yu. N. Drozhzhinov and B. I. Zavialov},
title = {A {Tauberian} theorem for quasiasymptotic decompositions of measures with supports in the~positive octant},
journal = {Sbornik. Mathematics},
pages = {185--209},
year = {1995},
volume = {81},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a9/}
}
TY - JOUR AU - Yu. N. Drozhzhinov AU - B. I. Zavialov TI - A Tauberian theorem for quasiasymptotic decompositions of measures with supports in the positive octant JO - Sbornik. Mathematics PY - 1995 SP - 185 EP - 209 VL - 81 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a9/ LA - en ID - SM_1995_81_1_a9 ER -
Yu. N. Drozhzhinov; B. I. Zavialov. A Tauberian theorem for quasiasymptotic decompositions of measures with supports in the positive octant. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 185-209. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a9/
[1] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR
[2] Zavyalov B. I., “Ob asimptoticheskikh svoistvakh funktsii, golomorfnykh v trubchatykh konusakh”, Matem. sb., 136(178):1 (1988), 97–114 | MR | Zbl
[3] Postnikov A. G., “Tauberova teoriya i ee primeneniya”, Trudy MIAN, 144, Nauka, M., 1979 | MR | Zbl
[4] Subkhankulov M. A., Tauberovy teoremy s ostatkom, Nauka, M., 1976 | MR
[5] Ganelius T., Tauberian remainder theorems, Lect. Notes Mathem., 232, 1971 | MR | Zbl
[6] Frennemo L., “Tauberian problems for the $n$-dimensional Laplace transform, II”, Math. Scand., 20 (1967), 225–239 | MR
[7] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[8] Vladimirov V. S., “Mnogomernoe obobschenie tauberovoi teoremy Khardi i Littlvuda”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1084–1101 | MR | Zbl
[9] Nevels K., On stable attraction and Tauberian theorems, Ph. D., University of Groningen, 1974, p. 1–143