Locally finite-dimensional simple Lie algebras
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 137-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the authors introduce a new class of simple infinite-dimensional Lie algebras: locally finite-dimensional Lie algebras. First, general properties of such algebras are studied, and an uncountable family of examples is pointed out. Then the investigation is restricted to simple locally finite-dimensional algebras whose classical finite-dimensional simple factors have totally bounded dimension. The structure of these algebras is determined in the case where the base field is algebraically closed of characteristic $p>7$.
@article{SM_1995_81_1_a7,
     author = {Yu. A. Bahturin and H. Strade},
     title = {Locally finite-dimensional simple {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {137--161},
     year = {1995},
     volume = {81},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a7/}
}
TY  - JOUR
AU  - Yu. A. Bahturin
AU  - H. Strade
TI  - Locally finite-dimensional simple Lie algebras
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 137
EP  - 161
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a7/
LA  - en
ID  - SM_1995_81_1_a7
ER  - 
%0 Journal Article
%A Yu. A. Bahturin
%A H. Strade
%T Locally finite-dimensional simple Lie algebras
%J Sbornik. Mathematics
%D 1995
%P 137-161
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a7/
%G en
%F SM_1995_81_1_a7
Yu. A. Bahturin; H. Strade. Locally finite-dimensional simple Lie algebras. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 137-161. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a7/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Dzhekobson N., Algebry Li, Mir, M., 1963

[3] Zelmanov E. I., “Algebry Li s konechnoi graduirovkoi”, Matem. sb., 124(166) (1984), 353–392 | MR | Zbl

[4] Kats V. G., “Opisanie filtrovannykh algebr Li, s kotorymi assotsiirovany graduirovannye algebry Li kartanovskogo tipa”, Izv. AN SSSR. Ser. matem., 38 (1974), 800–838 ; Исправление, Изв. АН СССР. Сер. матем., 40 (1976), 1415 | MR | Zbl

[5] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33 (1969), 251–322 | MR | Zbl

[6] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[7] Bahturin Yu. A., “Simple Lie algebras satisfying a polynomial identity”, Serdica. Bulg. Math. J., 2:3 (1976), 241–246 | MR | Zbl

[8] Block R. E., Wilson R. L., “Classification of the restricted simple Lie algebras”, J. Algebra, 114 (1988), 115–259 | DOI | MR | Zbl

[9] Cartan H., “Les groupes des transformations continues, infinis, simples”, Ann. Sci. Ecole Norm. Sup., 26 (1909), 93–161 | MR | Zbl

[10] “Infinite-dimensional groups with applications.”, Proc. of a conf. (Berkeley, Calif., May 1984, M.S.R.I), Springer-Verlag, 1985 | MR

[11] Kegel O. H., Wehrfritz B. A. F., Locally finite groups, North–Holland, N.Y., 1973 | MR | Zbl

[12] Strade H., Farnsteiner R., Modular Lie algebras and their representations, Monographs and Textbooks, 116, Marcell Dekker, N.Y.–Basel, 1988 | MR | Zbl

[13] Strade H., Wilson R. L., “Classification of simple Lie algebras over an algebraically closed fields of prime characteristic”, Bull. Amer. Math. Soc., 24:2 (1991), 357–362 | DOI | MR | Zbl

[14] Wilson R. L., “Classification of generalized Witt algebras over algebraically closed fields”, Trans. Amer. Math. Soc., 153 (1971), 191–210 | DOI | MR | Zbl

[15] Wilson R. L., “A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic”, J. Algebra, 40 (1976), 418–465 | DOI | MR | Zbl