On solvability of nonlocal problems for a second-order elliptic equation
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 101-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is an investigation of the solvability of nonlocal problems for an elliptic equation, in which the values of the solution on the boundary of the domain $\mathcal{Q}$ under consideration are expressed in terms of its values at interior points and other points of the boundary. A new concept of solution (in the space of $(n-1)$-dimensionally continuous functions) is introduced, broader than concepts considered previously, and sufficient conditions are established for the problem to be Fredholm with index zero. The connection between solvability of the problem in this formulation and in the classical formulation is studied. In particular, there is a class of nonlocal problems (including some problems studied previously) that are Fredholm with index zero in the formulation introduced but not in the classical formulation (sometimes not even Fredholm). For a certain class of problems a theorem on unique solvability is proved.
@article{SM_1995_81_1_a6,
     author = {A. K. Gushchin and V. P. Mikhailov},
     title = {On solvability of nonlocal problems for a~second-order elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {101--136},
     year = {1995},
     volume = {81},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a6/}
}
TY  - JOUR
AU  - A. K. Gushchin
AU  - V. P. Mikhailov
TI  - On solvability of nonlocal problems for a second-order elliptic equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 101
EP  - 136
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a6/
LA  - en
ID  - SM_1995_81_1_a6
ER  - 
%0 Journal Article
%A A. K. Gushchin
%A V. P. Mikhailov
%T On solvability of nonlocal problems for a second-order elliptic equation
%J Sbornik. Mathematics
%D 1995
%P 101-136
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a6/
%G en
%F SM_1995_81_1_a6
A. K. Gushchin; V. P. Mikhailov. On solvability of nonlocal problems for a second-order elliptic equation. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 101-136. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a6/

[1] Browder F. E., “Non-local elliptic boundary value problems”, Amer. J. Math., 86:4 (1964), 735–750 | DOI | MR | Zbl

[2] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl

[3] Roitberg Ya. A., Sheftel Z. G., “Ob odnom klasse obschikh nelokalnykh ellipticheskikh zadach”, DAN SSSR, 192:3 (1970), 511–513 | MR | Zbl

[4] Gordeziani D. G., “Ob odnom metode resheniya kraevoi zadachi Bitsadze–Samarskogo”, Seminar IPM TGU, Annotatsii dokl., T. 2, 1970, 39–41 | MR | Zbl

[5] Zhitorashu N. V., Eidelman S. D., “O nelokalnykh granichnykh zadachakh dlya ellipticheskikh uravnenii”, Matem. issledovaniya (Kishinev), 6:2 (20) (1971), 63–73 | MR

[6] Roitberg Ya. A., Sheftel Z. G., “Formula Grina i teorema o gomeomorfizmakh dlya nelokalnykh kraevykh zadach”, DAN SSSR, 201:5 (1971), 1059–1062 | MR

[7] Roitberg Ya. A., Sheftel Z. G., “Nelokalnye zadachi dlya ellipticheskikh uravnenii i sistem”, Sibirskii matem. zhurnal, 13:1 (1972), 165–181 | MR | Zbl

[8] Kamynin L. I., “Edinstvennost kraevykh zadach dlya vyrozhdayuschegosya ellipticheskogo uravneniya 2-go poryadka”, Differentsialnye uravneniya, 14:1 (1978), 39–50 | MR

[9] Skubachevskii A. L., “O spektre nekotorykh nelokalnykh ellipticheskikh kraevykh zadach”, Matem. sbornik, 117 (159):4 (1982), 548–558 | MR

[10] Paneyakh B. P., “O nekotorykh nelokalnykh kraevykh zadachakh”, Shkola po teorii operatorov v funktsionalnykh prostranstvakh, Tezisy dokladov, Minsk, 1982 | Zbl

[11] Skubachevskii A. L., “Nelokalnye ellipticheskie zadachi s parametrom”, Matem. sbornik, 121 (163):2 (1983), 201–210 | MR

[12] Bitsadze A. V., “K teorii nelokalnykh kraevykh zadach”, DAN SSSR, 277:1 (1984), 17–19 | MR | Zbl

[13] Skubachevskii A. L., “Ellipticheskie zadachi A. V. Bitsadze, A. A. Samarskogo”, DAN SSSR, 278:4 (1984), 813–816 | MR

[14] Paneyakh B. P., “O nekotorykh nelokalnykh kraevykh zadachakh dlya lineinykh differentsialnykh operatorov”, Matem. zametki, 35:3 (1984), 425–434 | MR | Zbl

[15] Bitsadze A. V., “Ob odnom klasse uslovno razreshimykh nelokalnykh kraevykh zadach dlya garmonicheskikh funktsii”, DAN SSSR, 280:3 (1985), 521–524 | MR | Zbl

[16] Skubachevskii A. L., “Razreshimost ellipticheskikh zadach s kraevymi usloviyami tipa Bitsadze–Samarskogo”, Differents. uravneniya, 21:4 (1985), 701–706 | MR

[17] Skubachevskii A. L., “Nelokalnye kraevye zadachi so sdvigom”, Matem. zametki, 38:4 (1985), 587–598 | MR

[18] Skubachevskii A. L., “Razreshimost ellipticheskikh zadach s nelokalnymi kraevymi usloviyami”, DAN SSSR, 291:3 (1986), 551–555 | MR

[19] Skubachevskii A. L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Matem. sbornik, 129 (171):2 (1986), 279–302 | MR

[20] Kishkis K. Yu., “Ob indekse zadachi Bitsadze–Samarskogo dlya garmonicheskikh funktsii”, Differents. uravneniya, 24:1 (1988), 105–110 | MR | Zbl

[21] Kishkis K. Yu., “K teorii nelokalnykh zadach dlya uravneniya Laplasa”, Differents. uravneniya, 25:1 (1989), 59–64 | MR | Zbl

[22] Skubachevskii A. L., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh nelokalnykh kraevykh zadach”, Differents. uravneniya, 25:1 (1989), 127–135 | MR

[23] Carleman T., “Sur la theorie des equations integrales et ses applications”, Verhandlungen des Internationalen Mathematiker Kongresses, Bd. 1, Zurich, 1932, 138–151

[24] Guschin A. K., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sbornik, 137 (179):1 (1988), 19–64 | MR

[25] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[26] Carleson L., “Interpolation by bounded analytic functions and the corona problem”, Ann. of Math., 76:3 (1962), 547–559 | DOI | MR | Zbl

[27] Garnet Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[28] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[29] Hormander L., “$L^p$-estimates for (pluri-)subharmonic functions”, Math. scand., 20 (1967), 65–78 | MR

[30] Guschin A. K., Mikhailov V. P., “O suschestvovanii granichnykh znachenii reshenii ellipticheskogo uravneniya”, Matem. sbornik, 182:6 (1991), 787–810 | Zbl

[31] Mikhailov V. P., “O zadache Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:10 (1976), 1877–1891 | MR

[32] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1967 | MR

[33] Kondratev V. A., Kopachek I., Oleinik O. A., “O nailuchshikh pokazatelyakh Geldera dlya obobschennykh reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sbornik, 131 (173) (1986), 113–125 | MR