On genericity of integrable Hamiltonian systems of Bott type
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 87-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integrable Hamiltonian systems on a symplectic manifold are considered in this paper. A special role among them is played by the so-called systems of Bott type on a given energy level. Numerous investigations of concrete systems of classical mechanics and mathematical physics have shown that the systems are of Bott type for almost all energy levels. Therefore, an important question arises: is the property of being of Bott type in some sense a generic property? This paper is devoted to studying this question. The main result is that the set of systems of Bott type is of first category in the set of all integrable systems (in the weak metric) (Theorems 2.1 and 2.4). Recall that a set of first category is one that can be represented as a countable union of nowhere dense sets. However, this set is dense in the set of systems satisfying an additional condition (Theorem 3.1). The set of systems of Bott type is open in the strong metric (Theorem 4.1).
@article{SM_1995_81_1_a5,
     author = {V. V. Kalashnikov},
     title = {On genericity of integrable {Hamiltonian} systems of {Bott} type},
     journal = {Sbornik. Mathematics},
     pages = {87--99},
     year = {1995},
     volume = {81},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a5/}
}
TY  - JOUR
AU  - V. V. Kalashnikov
TI  - On genericity of integrable Hamiltonian systems of Bott type
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 87
EP  - 99
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a5/
LA  - en
ID  - SM_1995_81_1_a5
ER  - 
%0 Journal Article
%A V. V. Kalashnikov
%T On genericity of integrable Hamiltonian systems of Bott type
%J Sbornik. Mathematics
%D 1995
%P 87-99
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a5/
%G en
%F SM_1995_81_1_a5
V. V. Kalashnikov. On genericity of integrable Hamiltonian systems of Bott type. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 87-99. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a5/

[1] Fomenko A. T., Simplekticheskaya geometriya. Metody i prilozheniya, Izd-vo MGU, M., 1988 | MR | Zbl

[2] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[3] Bolsinov A. V., “Methods of Calculation of the Fomenko-Zieschang Invariant”, Adv. in Sov. Math., 6 (1991), 147–183 | MR | Zbl

[4] Nguen Ten Zung, “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR

[5] Oshemkov A. A., “Topologiya izoenergeticheskikh poverkhnostei i bifurkatsionnye diagrammy integriruemykh sluchaev dinamiki tverdogo tela na $\operatorname{SO}(4)$”, UMN, 42:6 (1990), 199–200 | MR | Zbl

[6] Oshemkov A. A., “Fomenko Invariants for the Main Integrable Cases of the Rigit Body Motion Equations”, Adv. in Sov. Math., 6 (1991), 67–146 | MR | Zbl

[7] Polyakova L. S., “Topologikal Invariants for Some Algebraic Analogs of the Toda Lattice”, Adv. in Sov. Math., 6 (1991), 185–207 | MR | Zbl

[8] Selivanova E. N., “Topologikal Classification of Integrable Bott Geodesic Flows on the Two-Dimensional Torus”, Adv. in Sov. Math., 6 (1991), 209–228 | MR | Zbl

[9] Fomenko A. T., “The Theory of Invariants of Multidimensional Integrable Hamiltonian Systems (with Arbitrary Many Degrees of Freedom). Molecular Table of All Integrable Systems with Two Degrees of Freedom”, Adv. in Sov. Math., 6 (1991), 1–35 | MR | Zbl

[10] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[11] Kharlamov M. P., “Topologicheskii analiz klassicheskikh integriruemykh sluchaev v dinamike tverdogo tela”, DAN SSSR, 273:6 (1983), 1322–1325 | MR | Zbl

[12] Kharlamov M. P., Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[13] Pogosyan T. I., Kharlamov M. P., “Bifurkatsionnoe mnozhestvo i integralnye mnogoobraziya zadachi o dvizhenii tverdogo tela v lineinom pole sil”, PMM, 43 (1979), 419–428 | MR | Zbl

[14] Cushman R., Knorrer H., “The energy momentum mapping of the Lagrange top”, Lect. notes in Math., 1139, 1985, 12–24 | MR | Zbl