Sequences of operators bounded in measure
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 35-58

Voir la notice de l'article provenant de la source Math-Net.Ru

The E. Stein and E. M. Nikishin criteria for continuity of an operator in measure are extended to the case of sequences of operators pointwise bounded in measure. The results obtained are applied to studying convergence in measure of multiple Fourier series and summation methods for them.
@article{SM_1995_81_1_a2,
     author = {S. A. Pichugov},
     title = {Sequences of operators bounded in measure},
     journal = {Sbornik. Mathematics},
     pages = {35--58},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a2/}
}
TY  - JOUR
AU  - S. A. Pichugov
TI  - Sequences of operators bounded in measure
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 35
EP  - 58
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a2/
LA  - en
ID  - SM_1995_81_1_a2
ER  - 
%0 Journal Article
%A S. A. Pichugov
%T Sequences of operators bounded in measure
%J Sbornik. Mathematics
%D 1995
%P 35-58
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a2/
%G en
%F SM_1995_81_1_a2
S. A. Pichugov. Sequences of operators bounded in measure. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 35-58. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a2/