The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 235-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The infinite chain of Friedman–Keller equations is studied that describes the evolution of the entire set of moments of a statistical solution of an abstract analogue of the Navier–Stokes system. The problem of closure of this chain is investigated. This problem consists in constructing a sequence of problems $\mathfrak{A}_N=0$ of $N$ unknown functions whose solutions $M^N=(M_1^N,\dots,M_N^N,0,0,\dots)$ approximate the system of moments $M=(M_1,\dots,M_k,\dots)$ as $N\to+\infty$. The case of large Reynolds numbers is considered. Exponential rate of convergence of $~M^N$ to $M$ as $N\to\infty$ is proved.
@article{SM_1995_81_1_a12,
     author = {A. V. Fursikov and O. Yu. Imanuvilov},
     title = {The rate of convergence of approximations for the closure of the {Friedman{\textendash}Keller} chain in the case of large {Reynolds} numbers},
     journal = {Sbornik. Mathematics},
     pages = {235--259},
     year = {1995},
     volume = {81},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a12/}
}
TY  - JOUR
AU  - A. V. Fursikov
AU  - O. Yu. Imanuvilov
TI  - The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 235
EP  - 259
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a12/
LA  - en
ID  - SM_1995_81_1_a12
ER  - 
%0 Journal Article
%A A. V. Fursikov
%A O. Yu. Imanuvilov
%T The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers
%J Sbornik. Mathematics
%D 1995
%P 235-259
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a12/
%G en
%F SM_1995_81_1_a12
A. V. Fursikov; O. Yu. Imanuvilov. The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 235-259. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a12/

[1] Reinolds O., “O dinamicheskoi teorii neszhimaemoi vyazkoi zhidkosti i opredelenii kriteriya”, Problemy turbulentnosti, ONTI, M., 1936, 185–227

[2] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, Ch. 1, Nauka, M., 1965; Ч. 2, Наука, М., 1967

[3] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[4] Fursikov A. V., “O probleme zamykaniya tsepochki momentnykh uravnenii v sluchae bolshikh chisel Reinoldsa”, Neklassicheskie uravneniya i uravneniya smeshannogo tipa, Matem. sbornik AN SSSR, Novosibirsk, 1990, 231–250 | MR | Zbl

[5] Fursikov A. V., “Problema zamykaniya tsepochek momentnykh uravnenii, sootvetstvuyuschikh trekhmernoi sisteme Nave–Stoksa v sluchae bolshikh chisel Reinoldsa”, DAN SSSR, 319:1 (1991), 83–87 | MR | Zbl

[6] Fursikov A. V., “Closure problem for the chain of the Friedmann–Keller moment equations in the case of large Reynolds numbers”, The Navier–Stikes equations. Theory and Numerical Methods, Proceedings (Oberwolfach, 1991), Lecture Notes in Mathematics, 1530, Springer-Verlag, 1992, 226–254 | MR

[7] Tikhonov A. N., Arsenin V. Ya., Metody reshenii nekorrektnykh zadach, Nauka, M., 1979 | MR

[8] Fursikov A. V., “Zadacha Koshi dlya ellipticheskogo uravneniya vtorogo poryadka v uslovno-korrektnoi postanovke”, Tr. MMO, 52, URSS, M., 1989, 138–174 | Zbl

[9] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, Izd-vo IL, M., 1961 | MR

[10] Fursikov A. V., “O edinstvennosti resheniya tsepochki momentnykh uravnenii, sootvetstvuyuschei trekhmernoi sisteme Nave–Stoksa”, Matem. sb., 134(176):4 (1987), 472–495 | MR

[11] Ladyzhenskaya O. A., Matematicheskaya teoriya vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[12] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[13] Fursikov A. V., “Momentnaya teoriya dlya uravnenii Nave–Stoksa so sluchainoi pravoi chastyu”, Izvestiya RAN. Seriya matem., 56:6 (1992), 1273–1315 | MR | Zbl

[14] Alekseev V. N., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye kraevye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | Zbl