On removable singular sets for quasilinear elliptic equations
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 229-234

Voir la notice de l'article provenant de la source Math-Net.Ru

For equations of the form $$ \operatorname{div}(|\nabla u|^{p-2}\nabla u) =\alpha|u|^{\beta_1}|\nabla u|^{\beta_2}\operatorname{sgn}u,\qquad x\in\Omega\subset\mathbb{R}^n, $$ in the case $1$, $\beta_1>0$, $0\leqslant \beta_2\leqslant p$, $\beta_1+\beta_2>p-1$, $\alpha>0$, sufficient conditions are given for removability of singular sets of dimension $\alpha$. These conditions are nearly necessary, and are given by the formula $$ 0\leqslant \alpha \frac{p\beta_1+\beta_2}{\beta_1+\beta_2+1-p}. $$
@article{SM_1995_81_1_a11,
     author = {M. V. Tuvaev},
     title = {On removable singular sets for quasilinear elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {229--234},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a11/}
}
TY  - JOUR
AU  - M. V. Tuvaev
TI  - On removable singular sets for quasilinear elliptic equations
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 229
EP  - 234
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a11/
LA  - en
ID  - SM_1995_81_1_a11
ER  - 
%0 Journal Article
%A M. V. Tuvaev
%T On removable singular sets for quasilinear elliptic equations
%J Sbornik. Mathematics
%D 1995
%P 229-234
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a11/
%G en
%F SM_1995_81_1_a11
M. V. Tuvaev. On removable singular sets for quasilinear elliptic equations. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 229-234. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a11/