On removable singular sets for quasilinear elliptic equations
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 229-234
Voir la notice de l'article provenant de la source Math-Net.Ru
For equations of the form
$$
\operatorname{div}(|\nabla u|^{p-2}\nabla u)
=\alpha|u|^{\beta_1}|\nabla u|^{\beta_2}\operatorname{sgn}u,\qquad x\in\Omega\subset\mathbb{R}^n,
$$
in the case $1$, $\beta_1>0$, $0\leqslant \beta_2\leqslant p$, $\beta_1+\beta_2>p-1$,
$\alpha>0$, sufficient conditions are given for removability of singular sets of dimension
$\alpha$. These conditions are nearly necessary, and are given by the formula
$$
0\leqslant \alpha \frac{p\beta_1+\beta_2}{\beta_1+\beta_2+1-p}.
$$
@article{SM_1995_81_1_a11,
author = {M. V. Tuvaev},
title = {On removable singular sets for quasilinear elliptic equations},
journal = {Sbornik. Mathematics},
pages = {229--234},
publisher = {mathdoc},
volume = {81},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a11/}
}
M. V. Tuvaev. On removable singular sets for quasilinear elliptic equations. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 229-234. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a11/