On sequences of measure-valued solutions of a~first-order quasilinear equation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 211-227
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The behavior of bounded sequences of measure-valued solutions of the equation
$$
\operatorname{div}_x \varphi (x,u)+\psi (x,u)=0
$$
is investigated, where $u = u(x)$, $x=(x_1,\dots,x_n)\in\Omega$, and 
$\Omega\subset\mathbb{R}^n$ is an open set. The main result here is a proof that a bounded sequence of measure-valued solutions of such equations is precompact in the topology of strong convergence.
			
            
            
            
          
        
      @article{SM_1995_81_1_a10,
     author = {E. Yu. Panov},
     title = {On sequences of measure-valued solutions of a~first-order quasilinear equation},
     journal = {Sbornik. Mathematics},
     pages = {211--227},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/}
}
                      
                      
                    E. Yu. Panov. On sequences of measure-valued solutions of a~first-order quasilinear equation. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 211-227. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/
