On sequences of measure-valued solutions of a~first-order quasilinear equation
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 211-227

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of bounded sequences of measure-valued solutions of the equation $$ \operatorname{div}_x \varphi (x,u)+\psi (x,u)=0 $$ is investigated, where $u = u(x)$, $x=(x_1,\dots,x_n)\in\Omega$, and $\Omega\subset\mathbb{R}^n$ is an open set. The main result here is a proof that a bounded sequence of measure-valued solutions of such equations is precompact in the topology of strong convergence.
@article{SM_1995_81_1_a10,
     author = {E. Yu. Panov},
     title = {On sequences of measure-valued solutions of a~first-order quasilinear equation},
     journal = {Sbornik. Mathematics},
     pages = {211--227},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On sequences of measure-valued solutions of a~first-order quasilinear equation
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 211
EP  - 227
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/
LA  - en
ID  - SM_1995_81_1_a10
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On sequences of measure-valued solutions of a~first-order quasilinear equation
%J Sbornik. Mathematics
%D 1995
%P 211-227
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/
%G en
%F SM_1995_81_1_a10
E. Yu. Panov. On sequences of measure-valued solutions of a~first-order quasilinear equation. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 211-227. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/