@article{SM_1995_81_1_a10,
author = {E. Yu. Panov},
title = {On sequences of measure-valued solutions of a~first-order quasilinear equation},
journal = {Sbornik. Mathematics},
pages = {211--227},
year = {1995},
volume = {81},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/}
}
E. Yu. Panov. On sequences of measure-valued solutions of a first-order quasilinear equation. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 211-227. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a10/
[1] Tartar L., “$H$-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations”, Proc. Royal Soc. Edinburgh, 115A:3–4 (1990) | MR
[2] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 187:1 (1969), 29–32 | Zbl
[3] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81(123) (1970), 228–255 | MR | Zbl
[4] Tartar L., “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics, Heriot–Watt Symp., Research notes in mathematics, 4, 1979, 136–212 | MR | Zbl
[5] DiPerna R. J., “Generalized solutions to conservation laws”, Systems of nonlinear partial differential equations, NATO ASI Series, ed. J. M. Ball, D. Reidel Pub. Co., 1983
[6] Dakoronya B., “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, UMN, 44:4 (1989), 35–98 | MR
[7] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1957 | MR
[8] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR