The Carathéodory–Fejér problem and optimal recovery of derivatives in Hardy spaces
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 21-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Carathéodory–Fejér problem in the Hardy spaces $ H_p$ is reduced to solving systems of a certain form. The optimal method of recovery of the derivative of any order of a function in $H_p$ from its values on a collection of points is expressed in terms of the solution of a system of the same type. The analogous problem of recovery is considered in the space $h_\infty$ of bounded harmonic functions.
@article{SM_1995_81_1_a1,
     author = {K. Yu. Osipenko},
     title = {The {Carath\'eodory{\textendash}Fej\'er} problem and optimal recovery of derivatives in {Hardy} spaces},
     journal = {Sbornik. Mathematics},
     pages = {21--33},
     year = {1995},
     volume = {81},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a1/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - The Carathéodory–Fejér problem and optimal recovery of derivatives in Hardy spaces
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 21
EP  - 33
VL  - 81
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1995_81_1_a1/
LA  - en
ID  - SM_1995_81_1_a1
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T The Carathéodory–Fejér problem and optimal recovery of derivatives in Hardy spaces
%J Sbornik. Mathematics
%D 1995
%P 21-33
%V 81
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1995_81_1_a1/
%G en
%F SM_1995_81_1_a1
K. Yu. Osipenko. The Carathéodory–Fejér problem and optimal recovery of derivatives in Hardy spaces. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a1/

[1] Osipenko K. Yu., “Nailuchshee priblizhenie analiticheskikh funktsii po informatsii ob ikh znacheniyakh v konechnom chisle tochek”, Matem. zametki, 19:1 (1976), 29–40 | MR | Zbl

[2] Micchelli C. A., Rivlin T. J., A survey of optimal recovery. Optimal estimation in approximation theory, Plenum Press, N.Y., 1977 | MR | Zbl

[3] Landau E., “Abschätzung der Koeffizientensumme einer Poenzreihe”, Arch. Math. Phys., 21 (1913), 42–50, 250–255 | Zbl

[4] Macintyre A., Rogosinski W., “Extremum problems in the theory of analytic functions”, Acta Math., 82 (1950), 275–325 | DOI | MR | Zbl

[5] Rogosinski W. W., Shapiro H. S., “On certain extremum problems for analytic functions”, Acta Math., 90 (1953), 287–318 | DOI | MR | Zbl

[6] Khavinson S. Ya., “Teoriya ekstremalnykh zadach dlya ogranichennykh analiticheskikh funktsii, udovletvoryayuschikh dopolnitelnym usloviyam vnutri oblasti”, UMN, 18:2 (1963), 25–98 | MR | Zbl

[7] Duren P. L., Theory of $H^p$ spaces, Acad. Press, N.Y., 1970 | MR

[8] Osipenko K. Yu., “Optimalnaya interpolyatsiya analiticheskikh funktsii”, Matem. zametki, 12:4 (1972), 465–476 | MR | Zbl

[9] Fisher S. D., Micchelli C. A., “The $n$-width of sets of analytic functions”, Duke Math. J., 47:4 (1980), 789–801 | DOI | MR | Zbl

[10] Pevnyi A. B., “Ob optimalnosti nekotorykh splainovykh algoritmov”, Izv. vuzov. Matematika, 1986, no. 5, 43–49 | MR | Zbl

[11] Osipenko K. Yu., Stesin M. I., “O zadachakh vosstanovleniya v prostranstvakh Khardi i Bergmana”, Matem. zametki, 49:4 (1991), 95–104 | MR | Zbl

[12] Caratheodory C., Fejer L., “Über den Zusammenhung der extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landu'schen Satz”, Rend. Cir. Mat. di Palermo, 1911, no. 32, 218–239 | DOI | Zbl

[13] Khavinson S. Ya., Osnovy teorii ekstremalnykh zadach dlya ogranichennykh analiticheskikh funktsii s dopolnitelnymi usloviyami, MISI im. V.V. Kuibysheva, M., 1981

[14] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[15] Dieudonné J., “Recherches sur quelques problems ralatifs aux polinomes et aux fonctions bornées dúne variable complexe”, Ann. Ecole Norm. sup., 3:48 (1931), 247–358 | MR | Zbl

[16] Osipenko K. Yu., “Nailuchshie i optimalnye metody vosstanovleniya na klassakh garmonicheskikh funktsii”, Matem. sb., 182:5 (1991), 723–745 | MR