The Carath\'eodory--Fej\'er problem and optimal recovery of derivatives in Hardy spaces
Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 21-33
Voir la notice de l'article provenant de la source Math-Net.Ru
The Carathéodory–Fejér problem in the Hardy spaces $ H_p$ is reduced to solving systems of a certain form. The optimal method of recovery of the derivative of any order of a function in
$H_p$ from its values on a collection of points is expressed in terms of the solution of a system of the same type. The analogous problem of recovery is considered in the space $h_\infty$ of bounded harmonic functions.
@article{SM_1995_81_1_a1,
author = {K. Yu. Osipenko},
title = {The {Carath\'eodory--Fej\'er} problem and optimal recovery of derivatives in {Hardy} spaces},
journal = {Sbornik. Mathematics},
pages = {21--33},
publisher = {mathdoc},
volume = {81},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_81_1_a1/}
}
K. Yu. Osipenko. The Carath\'eodory--Fej\'er problem and optimal recovery of derivatives in Hardy spaces. Sbornik. Mathematics, Tome 81 (1995) no. 1, pp. 21-33. http://geodesic.mathdoc.fr/item/SM_1995_81_1_a1/