Zeros of holomorphic functions, and integral operators for observing dynamical systems
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 445-465

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained for observability, predictability, and stabilization of nonlinear dynamical systems with incomplete feedback in the case of analyticity in the phase variables and with utilization of integral observation operators. At the basis of the results obtained are properties of sets of common zeros of families of holomorphic functions and the technique of solving adjoint problems of control by linear distributed systems.
@article{SM_1995_80_2_a9,
     author = {Yu. V. Zaika},
     title = {Zeros of holomorphic functions, and integral operators for observing dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {445--465},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a9/}
}
TY  - JOUR
AU  - Yu. V. Zaika
TI  - Zeros of holomorphic functions, and integral operators for observing dynamical systems
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 445
EP  - 465
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a9/
LA  - en
ID  - SM_1995_80_2_a9
ER  - 
%0 Journal Article
%A Yu. V. Zaika
%T Zeros of holomorphic functions, and integral operators for observing dynamical systems
%J Sbornik. Mathematics
%D 1995
%P 445-465
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a9/
%G en
%F SM_1995_80_2_a9
Yu. V. Zaika. Zeros of holomorphic functions, and integral operators for observing dynamical systems. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 445-465. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a9/