@article{SM_1995_80_2_a7,
author = {A. A. Kon'kov},
title = {On the dimension of the~solution space of elliptic systems in unbounded domains},
journal = {Sbornik. Mathematics},
pages = {411--434},
year = {1995},
volume = {80},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/}
}
A. A. Kon'kov. On the dimension of the solution space of elliptic systems in unbounded domains. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 411-434. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/
[1] Kondratev V. A., Oleinik O. A., “O periodicheskikh po vremeni resheniyakh parabolicheskikh uravnenii vtorogo poryadka vo vneshnikh oblastyakh”, Vest. MGU. Ser. 1. Matem. mekh., 1985, no. 4, 38–47 | MR | Zbl
[2] Konkov A. A., O edinstvennosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii v neogranichennykh oblastyakh, Dep. VINITI. 1.09.87, No 6387-B87 | Zbl
[3] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[4] Konkov A. A., O edinstvennosti resheniya pervoi kraevoi zadachi dlya ellipticheskikh uravnenii i sistem, opredelennykh v neogranichennykh oblastyakh v $R^n$ i na gladkikh mnogoobraziyakh, Dep. VINITI. 11.05.88, No 3673-B88
[5] Kudryavtsev L. D., “Reshenie pervoi kraevoi zadachi dlya samosopryazhennykh ellipticheskikh uravnenii v sluchae neogranichennoi oblasti”, Izv. AN SSSR. Ser. Matem., 31:5 (1967), 1179–1199 | MR | Zbl
[6] Kondratev V. A., Oleinik O. A., “Teoremy edinstvennosti resheniya vneshnikh kraevykh zadach i analog printsipa Sen-Venana”, UMN, 39:4 (1984), 165–166 | MR | Zbl
[7] Grigoryan A. A., “O liuvillevykh teoremakh dlya garmonicheskikh funktsii s konechnym integralom Dirikhle”, Matem. sb., 132(174) (1987), 496–516 | MR
[8] Grigoryan A. A., “Ob odnoi liuvillevoi teoreme na mnogoobrazii”, UMN, 37:3 (1982), 181–182 | MR | Zbl
[9] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, UMN, 27:6 (1972), 67–138 | MR | Zbl
[10] Mazya V. G., Khvoles A. A., “O vlozhenii prostranstva $L_p^l(\Omega )$ v prostranstvo obobschennykh funktsii”, Trudy Tbil. matem. in-ta im. A. M. Razmadze, 66 (1981), 70–83 | MR