On the dimension of the~solution space of elliptic systems in unbounded domains
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 411-434
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This article is a study of the Dirichlet problem
$$
\begin{cases}
Lu=0\text{in}\ \Omega,
\\
\partial^\alpha u\big|_{\partial \Omega}=0,|\alpha|\leqslant m-1,
\end{cases} 
$$
where $\Omega\subset R^n$ is an open (possibly unbounded) set, 
$\alpha=(\alpha_1,\dots,\alpha_n)$ is a multi-index, 
$|\alpha|=\alpha_1+\dots+\alpha_n$,
$$
L=\sum_{|\alpha|=|\beta|=m}\partial^\alpha \bigl(a_{\alpha\beta}(x)\partial^\beta\bigr),
$$
and the coefficients $a_{\alpha\beta}(x)$ are $N\times N$ matrices.
			
            
            
            
          
        
      @article{SM_1995_80_2_a7,
     author = {A. A. Kon'kov},
     title = {On the dimension of the~solution space of elliptic systems in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {411--434},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/}
}
                      
                      
                    A. A. Kon'kov. On the dimension of the~solution space of elliptic systems in unbounded domains. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 411-434. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/
