On the dimension of the solution space of elliptic systems in unbounded domains
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 411-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is a study of the Dirichlet problem $$ \begin{cases} Lu=0&\text{in}\ \Omega, \\ \partial^\alpha u\big|_{\partial \Omega}=0,&|\alpha|\leqslant m-1, \end{cases} $$ where $\Omega\subset R^n$ is an open (possibly unbounded) set, $\alpha=(\alpha_1,\dots,\alpha_n)$ is a multi-index, $|\alpha|=\alpha_1+\dots+\alpha_n$, $$ L=\sum_{|\alpha|=|\beta|=m}\partial^\alpha \bigl(a_{\alpha\beta}(x)\partial^\beta\bigr), $$ and the coefficients $a_{\alpha\beta}(x)$ are $N\times N$ matrices.
@article{SM_1995_80_2_a7,
     author = {A. A. Kon'kov},
     title = {On the dimension of the~solution space of elliptic systems in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {411--434},
     year = {1995},
     volume = {80},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On the dimension of the solution space of elliptic systems in unbounded domains
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 411
EP  - 434
VL  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/
LA  - en
ID  - SM_1995_80_2_a7
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On the dimension of the solution space of elliptic systems in unbounded domains
%J Sbornik. Mathematics
%D 1995
%P 411-434
%V 80
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/
%G en
%F SM_1995_80_2_a7
A. A. Kon'kov. On the dimension of the solution space of elliptic systems in unbounded domains. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 411-434. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/

[1] Kondratev V. A., Oleinik O. A., “O periodicheskikh po vremeni resheniyakh parabolicheskikh uravnenii vtorogo poryadka vo vneshnikh oblastyakh”, Vest. MGU. Ser. 1. Matem. mekh., 1985, no. 4, 38–47 | MR | Zbl

[2] Konkov A. A., O edinstvennosti resheniya zadachi Dirikhle dlya ellipticheskikh uravnenii v neogranichennykh oblastyakh, Dep. VINITI. 1.09.87, No 6387-B87 | Zbl

[3] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl

[4] Konkov A. A., O edinstvennosti resheniya pervoi kraevoi zadachi dlya ellipticheskikh uravnenii i sistem, opredelennykh v neogranichennykh oblastyakh v $R^n$ i na gladkikh mnogoobraziyakh, Dep. VINITI. 11.05.88, No 3673-B88

[5] Kudryavtsev L. D., “Reshenie pervoi kraevoi zadachi dlya samosopryazhennykh ellipticheskikh uravnenii v sluchae neogranichennoi oblasti”, Izv. AN SSSR. Ser. Matem., 31:5 (1967), 1179–1199 | MR | Zbl

[6] Kondratev V. A., Oleinik O. A., “Teoremy edinstvennosti resheniya vneshnikh kraevykh zadach i analog printsipa Sen-Venana”, UMN, 39:4 (1984), 165–166 | MR | Zbl

[7] Grigoryan A. A., “O liuvillevykh teoremakh dlya garmonicheskikh funktsii s konechnym integralom Dirikhle”, Matem. sb., 132(174) (1987), 496–516 | MR

[8] Grigoryan A. A., “Ob odnoi liuvillevoi teoreme na mnogoobrazii”, UMN, 37:3 (1982), 181–182 | MR | Zbl

[9] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, UMN, 27:6 (1972), 67–138 | MR | Zbl

[10] Mazya V. G., Khvoles A. A., “O vlozhenii prostranstva $L_p^l(\Omega )$ v prostranstvo obobschennykh funktsii”, Trudy Tbil. matem. in-ta im. A. M. Razmadze, 66 (1981), 70–83 | MR