On the dimension of the~solution space of elliptic systems in unbounded domains
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 411-434

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a study of the Dirichlet problem $$ \begin{cases} Lu=0\text{in}\ \Omega, \\ \partial^\alpha u\big|_{\partial \Omega}=0,|\alpha|\leqslant m-1, \end{cases} $$ where $\Omega\subset R^n$ is an open (possibly unbounded) set, $\alpha=(\alpha_1,\dots,\alpha_n)$ is a multi-index, $|\alpha|=\alpha_1+\dots+\alpha_n$, $$ L=\sum_{|\alpha|=|\beta|=m}\partial^\alpha \bigl(a_{\alpha\beta}(x)\partial^\beta\bigr), $$ and the coefficients $a_{\alpha\beta}(x)$ are $N\times N$ matrices.
@article{SM_1995_80_2_a7,
     author = {A. A. Kon'kov},
     title = {On the dimension of the~solution space of elliptic systems in unbounded domains},
     journal = {Sbornik. Mathematics},
     pages = {411--434},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/}
}
TY  - JOUR
AU  - A. A. Kon'kov
TI  - On the dimension of the~solution space of elliptic systems in unbounded domains
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 411
EP  - 434
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/
LA  - en
ID  - SM_1995_80_2_a7
ER  - 
%0 Journal Article
%A A. A. Kon'kov
%T On the dimension of the~solution space of elliptic systems in unbounded domains
%J Sbornik. Mathematics
%D 1995
%P 411-434
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/
%G en
%F SM_1995_80_2_a7
A. A. Kon'kov. On the dimension of the~solution space of elliptic systems in unbounded domains. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 411-434. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a7/