Spline approximation and optimal recovery of operators
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 393-409

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal recovery, on the basis of exact or erroneous information, of symmetry-preserving operators on sets of elements of convolution type is solved. Using the information operator and a generating kernel, an approximation apparatus is constructed, called information-kernel splines. In particular cases, it coincides with sets of polynomial splines in one or several variables. Interpolation and smoothing are solvable for it.
@article{SM_1995_80_2_a6,
     author = {A. A. Zhensykbaev},
     title = {Spline approximation and optimal recovery of operators},
     journal = {Sbornik. Mathematics},
     pages = {393--409},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Spline approximation and optimal recovery of operators
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 393
EP  - 409
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/
LA  - en
ID  - SM_1995_80_2_a6
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Spline approximation and optimal recovery of operators
%J Sbornik. Mathematics
%D 1995
%P 393-409
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/
%G en
%F SM_1995_80_2_a6
A. A. Zhensykbaev. Spline approximation and optimal recovery of operators. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 393-409. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/