Spline approximation and optimal recovery of operators
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 393-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of optimal recovery, on the basis of exact or erroneous information, of symmetry-preserving operators on sets of elements of convolution type is solved. Using the information operator and a generating kernel, an approximation apparatus is constructed, called information-kernel splines. In particular cases, it coincides with sets of polynomial splines in one or several variables. Interpolation and smoothing are solvable for it.
@article{SM_1995_80_2_a6,
     author = {A. A. Zhensykbaev},
     title = {Spline approximation and optimal recovery of operators},
     journal = {Sbornik. Mathematics},
     pages = {393--409},
     year = {1995},
     volume = {80},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/}
}
TY  - JOUR
AU  - A. A. Zhensykbaev
TI  - Spline approximation and optimal recovery of operators
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 393
EP  - 409
VL  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/
LA  - en
ID  - SM_1995_80_2_a6
ER  - 
%0 Journal Article
%A A. A. Zhensykbaev
%T Spline approximation and optimal recovery of operators
%J Sbornik. Mathematics
%D 1995
%P 393-409
%V 80
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/
%G en
%F SM_1995_80_2_a6
A. A. Zhensykbaev. Spline approximation and optimal recovery of operators. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 393-409. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a6/

[1] Micchelli C. A., Rivlin T. J., A survey of optimal recovery. Optimal estimation in apporximation theory, Plenum Press, N.Y., 1977 | MR | Zbl

[2] Traub Dzh., Vozhnyakovskii Kh., Obschaya teoriya optimalnykh algoritmov, Mir, M., 1983 | MR | Zbl

[3] Micchelli C. A., Rivlin T. J., “Lectures on optimal recovery”, Lect. Notes in Math., 1129, 1985, 21–93 | MR

[4] Korneichuk N. P., “Optimalnye metody kodirovaniya i vosstanovleniya funktsii”, Optimal algorithms, Sofia, 1986, 157–171

[5] Arestov V. V., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Tr. MIAN SSSR, 189, Nauka, M., 1989, 3–20 | MR

[6] Babenko V. F., Rudenko A. A., “Ob optimalnom vosstanovlenii svertok i skalyarnykh proizvedenii funktsii iz razlichnykh klassov”, Ukr. matem. zhurn., 43:10 (1991), 1305–1310 | MR | Zbl

[7] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Matem. zametki, 50:6 (1991), 85–93 | MR

[8] Zhensykbaev A. A., “Optimalnoe vosstanovlenie operatorov i approksimatsiya splainami”, Dokl. AN RK, 1992, no. 2, 8–13 | MR

[9] Zhensykbaev A. A., “Informatsionno-yadernye splainy v zadachakh vosstanovleniya”, Dokl. RAN, 328:3 (1993), 285–288 | MR | Zbl

[10] Golomb M., Lectures on theory of approximation, Argoun. Nat. Lab. Appl. Math. Division, 1962

[11] Raikov D. A., Vektornye prostranstva, Fizmatgiz, M., 1962 | MR

[12] Glazman I. M., Lyubich Yu. I., Konechnomernyi analiz, Nauka, M., 1969 | MR | Zbl

[13] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[14] Loran P.-Zh., Approksimatsiya i optimizatsiya, Mir, M., 1975

[15] Atteia M., “Existence et determination des fonctions splines a plusieurs variables”, C.R. Acad. Sci. Paris, 1966, no. 262, 575–578 | MR | Zbl

[16] Holmes R., “$R$-splines in Banach spaces. I: Interpolation of linear manifolds”, J. Math. Anal. Appl., 40 (1972), 574–593 | DOI | MR | Zbl

[17] Duchon J., Fonctions-spline du type plaque mince en dimension 2, RPT. 231, Univ. of Grenoble, 1975 | Zbl

[18] Schumaker L. L., “Fitting surfaces to scattered data”, Approx. Theory, V. II, eds. Lorentz G. G., Chui C. K., Shumaker L. L., Acad. Press, N.Y., 1976, 203–268 | MR

[19] Vasilenko V. A., Splain-funktsii: teoriya, algoritmy, programmy, Nauka, Novosibirsk, 1984 | MR

[20] Matveev O. V., “Approksimativnye svoistva interpolyatsionnykh $D^m$-splainov”, DAN SSSR, 321:1 (1991), 14–18 | MR | Zbl

[21] Schumaker L. L., Spline functions. Basic theory, Wiley and Sons, N.Y., 1981 | MR | Zbl

[22] Polia G., Sege G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978