On uniqueness of multiple trigonometric series
Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 335-365

Voir la notice de l'article provenant de la source Math-Net.Ru

Trigonometric series summable by the Riemann method almost everywhere are considered. In particular, it is proved that if a multiple trigonometric series sums almost everywhere by the Riemann method to an integrable function $f(x)$, and the Riemann majorant of this series satisfies a certain necessary condition, then the series is the Fourier series of the function $f(x)$.
@article{SM_1995_80_2_a4,
     author = {G. G. Gevorkyan},
     title = {On uniqueness of multiple trigonometric series},
     journal = {Sbornik. Mathematics},
     pages = {335--365},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1995_80_2_a4/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On uniqueness of multiple trigonometric series
JO  - Sbornik. Mathematics
PY  - 1995
SP  - 335
EP  - 365
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1995_80_2_a4/
LA  - en
ID  - SM_1995_80_2_a4
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On uniqueness of multiple trigonometric series
%J Sbornik. Mathematics
%D 1995
%P 335-365
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1995_80_2_a4/
%G en
%F SM_1995_80_2_a4
G. G. Gevorkyan. On uniqueness of multiple trigonometric series. Sbornik. Mathematics, Tome 80 (1995) no. 2, pp. 335-365. http://geodesic.mathdoc.fr/item/SM_1995_80_2_a4/